Files
DronePlanning/backend_service/venv/lib/python3.13/site-packages/numpy/polynomial/polyutils.pyi

308 lines
10 KiB
Python

from collections.abc import Callable, Iterable, Sequence
from typing import (
Final,
Literal,
Protocol,
SupportsIndex,
TypeAlias,
TypeVar,
overload,
type_check_only,
)
import numpy as np
import numpy.typing as npt
from numpy._typing import (
_ArrayLikeComplex_co,
_ArrayLikeFloat_co,
_ArrayLikeObject_co,
_FloatLike_co,
_NumberLike_co,
)
from ._polytypes import (
_AnyInt,
_Array2,
_ArrayLikeCoef_co,
_CoefArray,
_CoefLike_co,
_CoefSeries,
_ComplexArray,
_ComplexSeries,
_FloatArray,
_FloatSeries,
_FuncBinOp,
_ObjectArray,
_ObjectSeries,
_SeriesLikeCoef_co,
_SeriesLikeComplex_co,
_SeriesLikeFloat_co,
_SeriesLikeInt_co,
_SeriesLikeObject_co,
_Tuple2,
)
__all__ = ["as_series", "format_float", "getdomain", "mapdomain", "mapparms", "trimcoef", "trimseq"]
_T = TypeVar("_T")
_SeqT = TypeVar("_SeqT", bound=_CoefArray | Sequence[_CoefLike_co])
_AnyLineF: TypeAlias = Callable[[float, float], _CoefArray]
_AnyMulF: TypeAlias = Callable[[np.ndarray | list[int], np.ndarray], _CoefArray]
_AnyVanderF: TypeAlias = Callable[[np.ndarray, int], _CoefArray]
@type_check_only
class _ValFunc(Protocol[_T]):
def __call__(self, x: np.ndarray, c: _T, /, *, tensor: bool = True) -> _T: ...
###
@overload
def as_series(alist: npt.NDArray[np.integer] | _FloatArray, trim: bool = True) -> list[_FloatSeries]: ...
@overload
def as_series(alist: _ComplexArray, trim: bool = True) -> list[_ComplexSeries]: ...
@overload
def as_series(alist: _ObjectArray, trim: bool = True) -> list[_ObjectSeries]: ...
@overload
def as_series(alist: Iterable[_FloatArray | npt.NDArray[np.integer]], trim: bool = True) -> list[_FloatSeries]: ...
@overload
def as_series(alist: Iterable[_ComplexArray], trim: bool = True) -> list[_ComplexSeries]: ...
@overload
def as_series(alist: Iterable[_ObjectArray], trim: bool = True) -> list[_ObjectSeries]: ...
@overload
def as_series(alist: Iterable[_SeriesLikeFloat_co | float], trim: bool = True) -> list[_FloatSeries]: ...
@overload
def as_series(alist: Iterable[_SeriesLikeComplex_co | complex], trim: bool = True) -> list[_ComplexSeries]: ...
@overload
def as_series(alist: Iterable[_SeriesLikeCoef_co | object], trim: bool = True) -> list[_ObjectSeries]: ...
#
def trimseq(seq: _SeqT) -> _SeqT: ...
#
@overload
def trimcoef(c: npt.NDArray[np.integer] | _FloatArray, tol: _FloatLike_co = 0) -> _FloatSeries: ...
@overload
def trimcoef(c: _ComplexArray, tol: _FloatLike_co = 0) -> _ComplexSeries: ...
@overload
def trimcoef(c: _ObjectArray, tol: _FloatLike_co = 0) -> _ObjectSeries: ...
@overload
def trimcoef(c: _SeriesLikeFloat_co | float, tol: _FloatLike_co = 0) -> _FloatSeries: ...
@overload
def trimcoef(c: _SeriesLikeComplex_co | complex, tol: _FloatLike_co = 0) -> _ComplexSeries: ...
@overload
def trimcoef(c: _SeriesLikeCoef_co | object, tol: _FloatLike_co = 0) -> _ObjectSeries: ...
#
@overload
def getdomain(x: _FloatArray | npt.NDArray[np.integer]) -> _Array2[np.float64]: ...
@overload
def getdomain(x: _ComplexArray) -> _Array2[np.complex128]: ...
@overload
def getdomain(x: _ObjectArray) -> _Array2[np.object_]: ...
@overload
def getdomain(x: _SeriesLikeFloat_co | float) -> _Array2[np.float64]: ...
@overload
def getdomain(x: _SeriesLikeComplex_co | complex) -> _Array2[np.complex128]: ...
@overload
def getdomain(x: _SeriesLikeCoef_co | object) -> _Array2[np.object_]: ...
#
@overload
def mapparms(old: npt.NDArray[np.floating | np.integer], new: npt.NDArray[np.floating | np.integer]) -> _Tuple2[np.floating]: ...
@overload
def mapparms(old: npt.NDArray[np.number], new: npt.NDArray[np.number]) -> _Tuple2[np.complexfloating]: ...
@overload
def mapparms(old: npt.NDArray[np.object_ | np.number], new: npt.NDArray[np.object_ | np.number]) -> _Tuple2[object]: ...
@overload
def mapparms(old: Sequence[float], new: Sequence[float]) -> _Tuple2[float]: ...
@overload
def mapparms(old: Sequence[complex], new: Sequence[complex]) -> _Tuple2[complex]: ...
@overload
def mapparms(old: _SeriesLikeFloat_co, new: _SeriesLikeFloat_co) -> _Tuple2[np.floating]: ...
@overload
def mapparms(old: _SeriesLikeComplex_co, new: _SeriesLikeComplex_co) -> _Tuple2[np.complexfloating]: ...
@overload
def mapparms(old: _SeriesLikeCoef_co, new: _SeriesLikeCoef_co) -> _Tuple2[object]: ...
#
@overload
def mapdomain(x: _FloatLike_co, old: _SeriesLikeFloat_co, new: _SeriesLikeFloat_co) -> np.floating: ...
@overload
def mapdomain(x: _NumberLike_co, old: _SeriesLikeComplex_co, new: _SeriesLikeComplex_co) -> np.complexfloating: ...
@overload
def mapdomain(
x: npt.NDArray[np.floating | np.integer],
old: npt.NDArray[np.floating | np.integer],
new: npt.NDArray[np.floating | np.integer],
) -> _FloatSeries: ...
@overload
def mapdomain(x: npt.NDArray[np.number], old: npt.NDArray[np.number], new: npt.NDArray[np.number]) -> _ComplexSeries: ...
@overload
def mapdomain(
x: npt.NDArray[np.object_ | np.number],
old: npt.NDArray[np.object_ | np.number],
new: npt.NDArray[np.object_ | np.number],
) -> _ObjectSeries: ...
@overload
def mapdomain(x: _SeriesLikeFloat_co, old: _SeriesLikeFloat_co, new: _SeriesLikeFloat_co) -> _FloatSeries: ...
@overload
def mapdomain(x: _SeriesLikeComplex_co, old: _SeriesLikeComplex_co, new: _SeriesLikeComplex_co) -> _ComplexSeries: ...
@overload
def mapdomain(x: _SeriesLikeCoef_co, old: _SeriesLikeCoef_co, new: _SeriesLikeCoef_co) -> _ObjectSeries: ...
@overload
def mapdomain(x: _CoefLike_co, old: _SeriesLikeCoef_co, new: _SeriesLikeCoef_co) -> object: ...
#
def _nth_slice(i: SupportsIndex, ndim: SupportsIndex) -> tuple[slice | None, ...]: ...
# keep in sync with `vander_nd_flat`
@overload
def _vander_nd(
vander_fs: Sequence[_AnyVanderF],
points: Sequence[_ArrayLikeFloat_co],
degrees: Sequence[SupportsIndex],
) -> _FloatArray: ...
@overload
def _vander_nd(
vander_fs: Sequence[_AnyVanderF],
points: Sequence[_ArrayLikeComplex_co],
degrees: Sequence[SupportsIndex],
) -> _ComplexArray: ...
@overload
def _vander_nd(
vander_fs: Sequence[_AnyVanderF],
points: Sequence[_ArrayLikeObject_co | _ArrayLikeComplex_co],
degrees: Sequence[SupportsIndex],
) -> _ObjectArray: ...
@overload
def _vander_nd(
vander_fs: Sequence[_AnyVanderF],
points: Sequence[npt.ArrayLike],
degrees: Sequence[SupportsIndex],
) -> _CoefArray: ...
# keep in sync with `vander_nd`
@overload
def _vander_nd_flat(
vander_fs: Sequence[_AnyVanderF],
points: Sequence[_ArrayLikeFloat_co],
degrees: Sequence[SupportsIndex],
) -> _FloatArray: ...
@overload
def _vander_nd_flat(
vander_fs: Sequence[_AnyVanderF],
points: Sequence[_ArrayLikeComplex_co],
degrees: Sequence[SupportsIndex],
) -> _ComplexArray: ...
@overload
def _vander_nd_flat(
vander_fs: Sequence[_AnyVanderF],
points: Sequence[_ArrayLikeObject_co | _ArrayLikeComplex_co],
degrees: Sequence[SupportsIndex],
) -> _ObjectArray: ...
@overload
def _vander_nd_flat(
vander_fs: Sequence[_AnyVanderF],
points: Sequence[npt.ArrayLike],
degrees: Sequence[SupportsIndex],
) -> _CoefArray: ...
# keep in sync with `._polytypes._FuncFromRoots`
@overload
def _fromroots(line_f: _AnyLineF, mul_f: _AnyMulF, roots: _SeriesLikeFloat_co) -> _FloatSeries: ...
@overload
def _fromroots(line_f: _AnyLineF, mul_f: _AnyMulF, roots: _SeriesLikeComplex_co) -> _ComplexSeries: ...
@overload
def _fromroots(line_f: _AnyLineF, mul_f: _AnyMulF, roots: _SeriesLikeObject_co) -> _ObjectSeries: ...
@overload
def _fromroots(line_f: _AnyLineF, mul_f: _AnyMulF, roots: _SeriesLikeCoef_co) -> _CoefSeries: ...
# keep in sync with `_gridnd`
def _valnd(val_f: _ValFunc[_T], c: _T, *args: npt.ArrayLike) -> _T: ...
# keep in sync with `_valnd`
def _gridnd(val_f: _ValFunc[_T], c: _T, *args: npt.ArrayLike) -> _T: ...
# keep in sync with `_polytypes._FuncBinOp`
@overload
def _div(mul_f: _AnyMulF, c1: _SeriesLikeFloat_co, c2: _SeriesLikeFloat_co) -> _Tuple2[_FloatSeries]: ...
@overload
def _div(mul_f: _AnyMulF, c1: _SeriesLikeComplex_co, c2: _SeriesLikeComplex_co) -> _Tuple2[_ComplexSeries]: ...
@overload
def _div(mul_f: _AnyMulF, c1: _SeriesLikeObject_co, c2: _SeriesLikeObject_co) -> _Tuple2[_ObjectSeries]: ...
@overload
def _div(mul_f: _AnyMulF, c1: _SeriesLikeCoef_co, c2: _SeriesLikeCoef_co) -> _Tuple2[_CoefSeries]: ...
_add: Final[_FuncBinOp] = ...
_sub: Final[_FuncBinOp] = ...
# keep in sync with `_polytypes._FuncPow`
@overload
def _pow(mul_f: _AnyMulF, c: _SeriesLikeFloat_co, pow: _AnyInt, maxpower: _AnyInt | None) -> _FloatSeries: ...
@overload
def _pow(mul_f: _AnyMulF, c: _SeriesLikeComplex_co, pow: _AnyInt, maxpower: _AnyInt | None) -> _ComplexSeries: ...
@overload
def _pow(mul_f: _AnyMulF, c: _SeriesLikeObject_co, pow: _AnyInt, maxpower: _AnyInt | None) -> _ObjectSeries: ...
@overload
def _pow(mul_f: _AnyMulF, c: _SeriesLikeCoef_co, pow: _AnyInt, maxpower: _AnyInt | None) -> _CoefSeries: ...
# keep in sync with `_polytypes._FuncFit`
@overload
def _fit(
vander_f: _AnyVanderF,
x: _SeriesLikeFloat_co,
y: _ArrayLikeFloat_co,
deg: _SeriesLikeInt_co,
rcond: _FloatLike_co | None = None,
full: Literal[False] = False,
w: _SeriesLikeFloat_co | None = None,
) -> _FloatArray: ...
@overload
def _fit(
vander_f: _AnyVanderF,
x: _SeriesLikeComplex_co,
y: _ArrayLikeComplex_co,
deg: _SeriesLikeInt_co,
rcond: _FloatLike_co | None = None,
full: Literal[False] = False,
w: _SeriesLikeComplex_co | None = None,
) -> _ComplexArray: ...
@overload
def _fit(
vander_f: _AnyVanderF,
x: _SeriesLikeCoef_co,
y: _ArrayLikeCoef_co,
deg: _SeriesLikeInt_co,
rcond: _FloatLike_co | None = None,
full: Literal[False] = False,
w: _SeriesLikeCoef_co | None = None,
) -> _CoefArray: ...
@overload
def _fit(
vander_f: _AnyVanderF,
x: _SeriesLikeCoef_co,
y: _SeriesLikeCoef_co,
deg: _SeriesLikeInt_co,
rcond: _FloatLike_co | None,
full: Literal[True],
w: _SeriesLikeCoef_co | None = None,
) -> tuple[_CoefSeries, Sequence[np.inexact | np.int32]]: ...
@overload
def _fit(
vander_f: _AnyVanderF,
x: _SeriesLikeCoef_co,
y: _SeriesLikeCoef_co,
deg: _SeriesLikeInt_co,
rcond: _FloatLike_co | None = None,
*,
full: Literal[True],
w: _SeriesLikeCoef_co | None = None,
) -> tuple[_CoefSeries, Sequence[np.inexact | np.int32]]: ...
#
def _as_int(x: SupportsIndex, desc: str) -> int: ...
#
def format_float(x: _FloatLike_co, parens: bool = False) -> str: ...