ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 1 CUDA devices: Device 0: NVIDIA GeForce RTX 4060 Ti, compute capability 8.9, VMM: yes build: 6912 (961660b8c) with cc (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0 for x86_64-linux-gnu system info: n_threads = 6, n_threads_batch = 6, total_threads = 16 system_info: n_threads = 6 (n_threads_batch = 6) / 16 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 | main: binding port with default address family main: HTTP server is listening, hostname: 0.0.0.0, port: 8090, http threads: 15 main: loading model srv load_model: loading model '/home/huangfukk/models/gguf/Qwen3/Qwen3-Embedding-4B/Qwen3-Embedding-4B-Q5_K_M.gguf' llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4060 Ti) (0000:01:00.0) - 13681 MiB free llama_model_loader: loaded meta data with 36 key-value pairs and 398 tensors from /home/huangfukk/models/gguf/Qwen3/Qwen3-Embedding-4B/Qwen3-Embedding-4B-Q5_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = qwen3 llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Qwen3 Embedding 4B llama_model_loader: - kv 3: general.basename str = Qwen3-Embedding llama_model_loader: - kv 4: general.size_label str = 4B llama_model_loader: - kv 5: general.license str = apache-2.0 llama_model_loader: - kv 6: general.base_model.count u32 = 1 llama_model_loader: - kv 7: general.base_model.0.name str = Qwen3 4B Base llama_model_loader: - kv 8: general.base_model.0.organization str = Qwen llama_model_loader: - kv 9: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen3-4B-... llama_model_loader: - kv 10: general.tags arr[str,5] = ["transformers", "sentence-transforme... llama_model_loader: - kv 11: qwen3.block_count u32 = 36 llama_model_loader: - kv 12: qwen3.context_length u32 = 40960 llama_model_loader: - kv 13: qwen3.embedding_length u32 = 2560 llama_model_loader: - kv 14: qwen3.feed_forward_length u32 = 9728 llama_model_loader: - kv 15: qwen3.attention.head_count u32 = 32 llama_model_loader: - kv 16: qwen3.attention.head_count_kv u32 = 8 llama_model_loader: - kv 17: qwen3.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 18: qwen3.attention.layer_norm_rms_epsilon f32 = 0.000001 llama_model_loader: - kv 19: qwen3.attention.key_length u32 = 128 llama_model_loader: - kv 20: qwen3.attention.value_length u32 = 128 llama_model_loader: - kv 21: qwen3.pooling_type u32 = 3 llama_model_loader: - kv 22: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 23: tokenizer.ggml.pre str = qwen2 llama_model_loader: - kv 24: tokenizer.ggml.tokens arr[str,151665] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,151665] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 26: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",... llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 151643 llama_model_loader: - kv 28: tokenizer.ggml.padding_token_id u32 = 151643 llama_model_loader: - kv 29: tokenizer.ggml.eot_token_id u32 = 151645 llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 151643 llama_model_loader: - kv 31: tokenizer.ggml.add_eos_token bool = true llama_model_loader: - kv 32: tokenizer.ggml.add_bos_token bool = false llama_model_loader: - kv 33: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>... llama_model_loader: - kv 34: general.quantization_version u32 = 2 llama_model_loader: - kv 35: general.file_type u32 = 17 llama_model_loader: - type f32: 145 tensors llama_model_loader: - type q5_K: 216 tensors llama_model_loader: - type q6_K: 37 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q5_K - Medium print_info: file size = 2.68 GiB (5.73 BPW) load: printing all EOG tokens: load: - 151643 ('<|endoftext|>') load: - 151645 ('<|im_end|>') load: - 151662 ('<|fim_pad|>') load: - 151663 ('<|repo_name|>') load: - 151664 ('<|file_sep|>') load: special tokens cache size = 22 load: token to piece cache size = 0.9310 MB print_info: arch = qwen3 print_info: vocab_only = 0 print_info: n_ctx_train = 40960 print_info: n_embd = 2560 print_info: n_layer = 36 print_info: n_head = 32 print_info: n_head_kv = 8 print_info: n_rot = 128 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 128 print_info: n_embd_head_v = 128 print_info: n_gqa = 4 print_info: n_embd_k_gqa = 1024 print_info: n_embd_v_gqa = 1024 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-06 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 9728 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: n_expert_groups = 0 print_info: n_group_used = 0 print_info: causal attn = 1 print_info: pooling type = 3 print_info: rope type = 2 print_info: rope scaling = linear print_info: freq_base_train = 1000000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 40960 print_info: rope_finetuned = unknown print_info: model type = 4B print_info: model params = 4.02 B print_info: general.name = Qwen3 Embedding 4B print_info: vocab type = BPE print_info: n_vocab = 151665 print_info: n_merges = 151387 print_info: BOS token = 151643 '<|endoftext|>' print_info: EOS token = 151643 '<|endoftext|>' print_info: EOT token = 151645 '<|im_end|>' print_info: PAD token = 151643 '<|endoftext|>' print_info: LF token = 198 'Ċ' print_info: FIM PRE token = 151659 '<|fim_prefix|>' print_info: FIM SUF token = 151661 '<|fim_suffix|>' print_info: FIM MID token = 151660 '<|fim_middle|>' print_info: FIM PAD token = 151662 '<|fim_pad|>' print_info: FIM REP token = 151663 '<|repo_name|>' print_info: FIM SEP token = 151664 '<|file_sep|>' print_info: EOG token = 151643 '<|endoftext|>' print_info: EOG token = 151645 '<|im_end|>' print_info: EOG token = 151662 '<|fim_pad|>' print_info: EOG token = 151663 '<|repo_name|>' print_info: EOG token = 151664 '<|file_sep|>' print_info: max token length = 256 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: offloading 36 repeating layers to GPU load_tensors: offloaded 36/37 layers to GPU load_tensors: CPU_Mapped model buffer size = 303.75 MiB load_tensors: CUDA0 model buffer size = 2445.68 MiB .......................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 4096 llama_context: n_ctx_per_seq = 4096 llama_context: n_batch = 2048 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = auto llama_context: kv_unified = false llama_context: freq_base = 1000000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (4096) < n_ctx_train (40960) -- the full capacity of the model will not be utilized llama_context: CPU output buffer size = 0.59 MiB llama_kv_cache: CUDA0 KV buffer size = 576.00 MiB llama_kv_cache: size = 576.00 MiB ( 4096 cells, 36 layers, 1/1 seqs), K (f16): 288.00 MiB, V (f16): 288.00 MiB llama_context: Flash Attention was auto, set to enabled llama_context: CUDA0 compute buffer size = 604.96 MiB llama_context: CUDA_Host compute buffer size = 13.01 MiB llama_context: graph nodes = 1268 llama_context: graph splits = 4 (with bs=512), 3 (with bs=1) common_init_from_params: added <|endoftext|> logit bias = -inf common_init_from_params: added <|im_end|> logit bias = -inf common_init_from_params: added <|fim_pad|> logit bias = -inf common_init_from_params: added <|repo_name|> logit bias = -inf common_init_from_params: added <|file_sep|> logit bias = -inf common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) srv init: initializing slots, n_slots = 1 slot init: id 0 | task -1 | new slot n_ctx_slot = 4096 srv init: prompt cache is enabled, size limit: 8192 MiB srv init: use `--cache-ram 0` to disable the prompt cache srv init: for more info see https://github.com/ggml-org/llama.cpp/pull/16391 srv init: thinking = 0 main: model loaded main: chat template, chat_template: {%- if tools %} {{- '<|im_start|>system\n' }} {%- if messages[0]['role'] == 'system' %} {{- messages[0]['content'] }} {%- else %} {{- 'You are a helpful assistant.' }} {%- endif %} {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within XML tags:\n" }} {%- for tool in tools %} {{- "\n" }} {{- tool | tojson }} {%- endfor %} {{- "\n\n\nFor each function call, return a json object with function name and arguments within XML tags:\n\n{\"name\": , \"arguments\": }\n<|im_end|>\n" }} {%- else %} {%- if messages[0]['role'] == 'system' %} {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }} {%- else %} {{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }} {%- endif %} {%- endif %} {%- for message in messages %} {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %} {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }} {%- elif message.role == "assistant" %} {{- '<|im_start|>' + message.role }} {%- if message.content %} {{- '\n' + message.content }} {%- endif %} {%- for tool_call in message.tool_calls %} {%- if tool_call.function is defined %} {%- set tool_call = tool_call.function %} {%- endif %} {{- '\n\n{"name": "' }} {{- tool_call.name }} {{- '", "arguments": ' }} {{- tool_call.arguments | tojson }} {{- '}\n' }} {%- endfor %} {{- '<|im_end|>\n' }} {%- elif message.role == "tool" %} {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %} {{- '<|im_start|>user' }} {%- endif %} {{- '\n\n' }} {{- message.content }} {{- '\n' }} {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %} {{- '<|im_end|>\n' }} {%- endif %} {%- endif %} {%- endfor %} {%- if add_generation_prompt %} {{- '<|im_start|>assistant\n' }} {%- endif %} , example_format: '<|im_start|>system You are a helpful assistant<|im_end|> <|im_start|>user Hello<|im_end|> <|im_start|>assistant Hi there<|im_end|> <|im_start|>user How are you?<|im_end|> <|im_start|>assistant ' main: server is listening on http://0.0.0.0:8090 - starting the main loop srv update_slots: all slots are idle srv log_server_r: request: GET /health 127.0.0.1 200 slot get_availabl: id 0 | task -1 | selected slot by LRU, t_last = -1 slot launch_slot_: id 0 | task 0 | processing task slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 4096, n_keep = 0, task.n_tokens = 41 slot update_slots: id 0 | task 0 | n_tokens = 0, memory_seq_rm [0, end) slot update_slots: id 0 | task 0 | prompt processing progress, n_tokens = 41, batch.n_tokens = 41, progress = 1.000000 slot update_slots: id 0 | task 0 | prompt done, n_tokens = 41, batch.n_tokens = 41 slot release: id 0 | task 0 | stop processing: n_tokens = 41, truncated = 0 srv update_slots: all slots are idle srv log_server_r: request: POST /v1/embeddings 127.0.0.1 200 slot get_availabl: id 0 | task -1 | selected slot by LCP similarity, sim_best = 1.000 (> 0.100 thold), f_keep = 1.000 slot launch_slot_: id 0 | task 2 | processing task slot update_slots: id 0 | task 2 | new prompt, n_ctx_slot = 4096, n_keep = 0, task.n_tokens = 41 slot update_slots: id 0 | task 2 | need to evaluate at least 1 token for each active slot (n_past = 41, task.n_tokens() = 41) slot update_slots: id 0 | task 2 | n_past was set to 40 slot update_slots: id 0 | task 2 | n_tokens = 40, memory_seq_rm [40, end) slot update_slots: id 0 | task 2 | prompt processing progress, n_tokens = 41, batch.n_tokens = 1, progress = 1.000000 slot update_slots: id 0 | task 2 | prompt done, n_tokens = 41, batch.n_tokens = 1 slot release: id 0 | task 2 | stop processing: n_tokens = 41, truncated = 0 srv update_slots: all slots are idle srv log_server_r: request: POST /v1/embeddings 127.0.0.1 200 srv operator(): operator(): cleaning up before exit... llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted | llama_memory_breakdown_print: | - CUDA0 (RTX 4060 Ti) | 15944 = 5959 + (3626 = 2445 + 576 + 604) + 6358 | llama_memory_breakdown_print: | - Host | 316 = 303 + 0 + 13 | Received second interrupt, terminating immediately.