chore: 添加虚拟环境到仓库
- 添加 backend_service/venv 虚拟环境 - 包含所有Python依赖包 - 注意:虚拟环境约393MB,包含12655个文件
This commit is contained in:
@@ -0,0 +1,174 @@
|
||||
from .utilities import _iszero
|
||||
|
||||
|
||||
def _columnspace(M, simplify=False):
|
||||
"""Returns a list of vectors (Matrix objects) that span columnspace of ``M``
|
||||
|
||||
Examples
|
||||
========
|
||||
|
||||
>>> from sympy import Matrix
|
||||
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
|
||||
>>> M
|
||||
Matrix([
|
||||
[ 1, 3, 0],
|
||||
[-2, -6, 0],
|
||||
[ 3, 9, 6]])
|
||||
>>> M.columnspace()
|
||||
[Matrix([
|
||||
[ 1],
|
||||
[-2],
|
||||
[ 3]]), Matrix([
|
||||
[0],
|
||||
[0],
|
||||
[6]])]
|
||||
|
||||
See Also
|
||||
========
|
||||
|
||||
nullspace
|
||||
rowspace
|
||||
"""
|
||||
|
||||
reduced, pivots = M.echelon_form(simplify=simplify, with_pivots=True)
|
||||
|
||||
return [M.col(i) for i in pivots]
|
||||
|
||||
|
||||
def _nullspace(M, simplify=False, iszerofunc=_iszero):
|
||||
"""Returns list of vectors (Matrix objects) that span nullspace of ``M``
|
||||
|
||||
Examples
|
||||
========
|
||||
|
||||
>>> from sympy import Matrix
|
||||
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
|
||||
>>> M
|
||||
Matrix([
|
||||
[ 1, 3, 0],
|
||||
[-2, -6, 0],
|
||||
[ 3, 9, 6]])
|
||||
>>> M.nullspace()
|
||||
[Matrix([
|
||||
[-3],
|
||||
[ 1],
|
||||
[ 0]])]
|
||||
|
||||
See Also
|
||||
========
|
||||
|
||||
columnspace
|
||||
rowspace
|
||||
"""
|
||||
|
||||
reduced, pivots = M.rref(iszerofunc=iszerofunc, simplify=simplify)
|
||||
|
||||
free_vars = [i for i in range(M.cols) if i not in pivots]
|
||||
basis = []
|
||||
|
||||
for free_var in free_vars:
|
||||
# for each free variable, we will set it to 1 and all others
|
||||
# to 0. Then, we will use back substitution to solve the system
|
||||
vec = [M.zero] * M.cols
|
||||
vec[free_var] = M.one
|
||||
|
||||
for piv_row, piv_col in enumerate(pivots):
|
||||
vec[piv_col] -= reduced[piv_row, free_var]
|
||||
|
||||
basis.append(vec)
|
||||
|
||||
return [M._new(M.cols, 1, b) for b in basis]
|
||||
|
||||
|
||||
def _rowspace(M, simplify=False):
|
||||
"""Returns a list of vectors that span the row space of ``M``.
|
||||
|
||||
Examples
|
||||
========
|
||||
|
||||
>>> from sympy import Matrix
|
||||
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
|
||||
>>> M
|
||||
Matrix([
|
||||
[ 1, 3, 0],
|
||||
[-2, -6, 0],
|
||||
[ 3, 9, 6]])
|
||||
>>> M.rowspace()
|
||||
[Matrix([[1, 3, 0]]), Matrix([[0, 0, 6]])]
|
||||
"""
|
||||
|
||||
reduced, pivots = M.echelon_form(simplify=simplify, with_pivots=True)
|
||||
|
||||
return [reduced.row(i) for i in range(len(pivots))]
|
||||
|
||||
|
||||
def _orthogonalize(cls, *vecs, normalize=False, rankcheck=False):
|
||||
"""Apply the Gram-Schmidt orthogonalization procedure
|
||||
to vectors supplied in ``vecs``.
|
||||
|
||||
Parameters
|
||||
==========
|
||||
|
||||
vecs
|
||||
vectors to be made orthogonal
|
||||
|
||||
normalize : bool
|
||||
If ``True``, return an orthonormal basis.
|
||||
|
||||
rankcheck : bool
|
||||
If ``True``, the computation does not stop when encountering
|
||||
linearly dependent vectors.
|
||||
|
||||
If ``False``, it will raise ``ValueError`` when any zero
|
||||
or linearly dependent vectors are found.
|
||||
|
||||
Returns
|
||||
=======
|
||||
|
||||
list
|
||||
List of orthogonal (or orthonormal) basis vectors.
|
||||
|
||||
Examples
|
||||
========
|
||||
|
||||
>>> from sympy import I, Matrix
|
||||
>>> v = [Matrix([1, I]), Matrix([1, -I])]
|
||||
>>> Matrix.orthogonalize(*v)
|
||||
[Matrix([
|
||||
[1],
|
||||
[I]]), Matrix([
|
||||
[ 1],
|
||||
[-I]])]
|
||||
|
||||
See Also
|
||||
========
|
||||
|
||||
MatrixBase.QRdecomposition
|
||||
|
||||
References
|
||||
==========
|
||||
|
||||
.. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
|
||||
"""
|
||||
from .decompositions import _QRdecomposition_optional
|
||||
|
||||
if not vecs:
|
||||
return []
|
||||
|
||||
all_row_vecs = (vecs[0].rows == 1)
|
||||
|
||||
vecs = [x.vec() for x in vecs]
|
||||
M = cls.hstack(*vecs)
|
||||
Q, R = _QRdecomposition_optional(M, normalize=normalize)
|
||||
|
||||
if rankcheck and Q.cols < len(vecs):
|
||||
raise ValueError("GramSchmidt: vector set not linearly independent")
|
||||
|
||||
ret = []
|
||||
for i in range(Q.cols):
|
||||
if all_row_vecs:
|
||||
col = cls(Q[:, i].T)
|
||||
else:
|
||||
col = cls(Q[:, i])
|
||||
ret.append(col)
|
||||
return ret
|
||||
Reference in New Issue
Block a user