chore: 添加虚拟环境到仓库
- 添加 backend_service/venv 虚拟环境 - 包含所有Python依赖包 - 注意:虚拟环境约393MB,包含12655个文件
This commit is contained in:
@@ -0,0 +1,5 @@
|
||||
from .openai import OpenAI
|
||||
from .openai_async import AsyncOpenAI
|
||||
from .openai_providers import AsyncAzureOpenAI, AzureOpenAI
|
||||
|
||||
__all__ = ["OpenAI", "AsyncOpenAI", "AzureOpenAI", "AsyncAzureOpenAI"]
|
||||
@@ -0,0 +1,636 @@
|
||||
import time
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
raise ModuleNotFoundError(
|
||||
"Please install the OpenAI SDK to use this feature: 'pip install openai'"
|
||||
)
|
||||
|
||||
from posthog.ai.utils import (
|
||||
call_llm_and_track_usage,
|
||||
get_model_params,
|
||||
with_privacy_mode,
|
||||
)
|
||||
from posthog.client import Client as PostHogClient
|
||||
|
||||
|
||||
class OpenAI(openai.OpenAI):
|
||||
"""
|
||||
A wrapper around the OpenAI SDK that automatically sends LLM usage events to PostHog.
|
||||
"""
|
||||
|
||||
_ph_client: PostHogClient
|
||||
|
||||
def __init__(self, posthog_client: PostHogClient, **kwargs):
|
||||
"""
|
||||
Args:
|
||||
api_key: OpenAI API key.
|
||||
posthog_client: If provided, events will be captured via this client instead
|
||||
of the global posthog.
|
||||
**openai_config: Any additional keyword args to set on openai (e.g. organization="xxx").
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self._ph_client = posthog_client
|
||||
|
||||
# Store original objects after parent initialization (only if they exist)
|
||||
self._original_chat = getattr(self, "chat", None)
|
||||
self._original_embeddings = getattr(self, "embeddings", None)
|
||||
self._original_beta = getattr(self, "beta", None)
|
||||
self._original_responses = getattr(self, "responses", None)
|
||||
|
||||
# Replace with wrapped versions (only if originals exist)
|
||||
if self._original_chat is not None:
|
||||
self.chat = WrappedChat(self, self._original_chat)
|
||||
|
||||
if self._original_embeddings is not None:
|
||||
self.embeddings = WrappedEmbeddings(self, self._original_embeddings)
|
||||
|
||||
if self._original_beta is not None:
|
||||
self.beta = WrappedBeta(self, self._original_beta)
|
||||
|
||||
if self._original_responses is not None:
|
||||
self.responses = WrappedResponses(self, self._original_responses)
|
||||
|
||||
|
||||
class WrappedResponses:
|
||||
"""Wrapper for OpenAI responses that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: OpenAI, original_responses):
|
||||
self._client = client
|
||||
self._original = original_responses
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original responses object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
def create(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
if kwargs.get("stream", False):
|
||||
return self._create_streaming(
|
||||
posthog_distinct_id,
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return call_llm_and_track_usage(
|
||||
posthog_distinct_id,
|
||||
self._client._ph_client,
|
||||
"openai",
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
self._client.base_url,
|
||||
self._original.create,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _create_streaming(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str],
|
||||
posthog_trace_id: Optional[str],
|
||||
posthog_properties: Optional[Dict[str, Any]],
|
||||
posthog_privacy_mode: bool,
|
||||
posthog_groups: Optional[Dict[str, Any]],
|
||||
**kwargs: Any,
|
||||
):
|
||||
start_time = time.time()
|
||||
usage_stats: Dict[str, int] = {}
|
||||
final_content = []
|
||||
response = self._original.create(**kwargs)
|
||||
|
||||
def generator():
|
||||
nonlocal usage_stats
|
||||
nonlocal final_content # noqa: F824
|
||||
|
||||
try:
|
||||
for chunk in response:
|
||||
if hasattr(chunk, "type") and chunk.type == "response.completed":
|
||||
res = chunk.response
|
||||
if res.output and len(res.output) > 0:
|
||||
final_content.append(res.output[0])
|
||||
|
||||
if hasattr(chunk, "usage") and chunk.usage:
|
||||
usage_stats = {
|
||||
k: getattr(chunk.usage, k, 0)
|
||||
for k in [
|
||||
"input_tokens",
|
||||
"output_tokens",
|
||||
"total_tokens",
|
||||
]
|
||||
}
|
||||
|
||||
# Add support for cached tokens
|
||||
if hasattr(chunk.usage, "output_tokens_details") and hasattr(
|
||||
chunk.usage.output_tokens_details, "reasoning_tokens"
|
||||
):
|
||||
usage_stats["reasoning_tokens"] = (
|
||||
chunk.usage.output_tokens_details.reasoning_tokens
|
||||
)
|
||||
|
||||
if hasattr(chunk.usage, "input_tokens_details") and hasattr(
|
||||
chunk.usage.input_tokens_details, "cached_tokens"
|
||||
):
|
||||
usage_stats["cache_read_input_tokens"] = (
|
||||
chunk.usage.input_tokens_details.cached_tokens
|
||||
)
|
||||
|
||||
yield chunk
|
||||
|
||||
finally:
|
||||
end_time = time.time()
|
||||
latency = end_time - start_time
|
||||
output = final_content
|
||||
self._capture_streaming_event(
|
||||
posthog_distinct_id,
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
kwargs,
|
||||
usage_stats,
|
||||
latency,
|
||||
output,
|
||||
)
|
||||
|
||||
return generator()
|
||||
|
||||
def _capture_streaming_event(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str],
|
||||
posthog_trace_id: Optional[str],
|
||||
posthog_properties: Optional[Dict[str, Any]],
|
||||
posthog_privacy_mode: bool,
|
||||
posthog_groups: Optional[Dict[str, Any]],
|
||||
kwargs: Dict[str, Any],
|
||||
usage_stats: Dict[str, int],
|
||||
latency: float,
|
||||
output: Any,
|
||||
tool_calls: Optional[List[Dict[str, Any]]] = None,
|
||||
):
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
event_properties = {
|
||||
"$ai_provider": "openai",
|
||||
"$ai_model": kwargs.get("model"),
|
||||
"$ai_model_parameters": get_model_params(kwargs),
|
||||
"$ai_input": with_privacy_mode(
|
||||
self._client._ph_client, posthog_privacy_mode, kwargs.get("input")
|
||||
),
|
||||
"$ai_output_choices": with_privacy_mode(
|
||||
self._client._ph_client,
|
||||
posthog_privacy_mode,
|
||||
output,
|
||||
),
|
||||
"$ai_http_status": 200,
|
||||
"$ai_input_tokens": usage_stats.get("input_tokens", 0),
|
||||
"$ai_output_tokens": usage_stats.get("output_tokens", 0),
|
||||
"$ai_cache_read_input_tokens": usage_stats.get(
|
||||
"cache_read_input_tokens", 0
|
||||
),
|
||||
"$ai_reasoning_tokens": usage_stats.get("reasoning_tokens", 0),
|
||||
"$ai_latency": latency,
|
||||
"$ai_trace_id": posthog_trace_id,
|
||||
"$ai_base_url": str(self._client.base_url),
|
||||
**(posthog_properties or {}),
|
||||
}
|
||||
|
||||
if tool_calls:
|
||||
event_properties["$ai_tools"] = with_privacy_mode(
|
||||
self._client._ph_client,
|
||||
posthog_privacy_mode,
|
||||
tool_calls,
|
||||
)
|
||||
|
||||
if posthog_distinct_id is None:
|
||||
event_properties["$process_person_profile"] = False
|
||||
|
||||
if hasattr(self._client._ph_client, "capture"):
|
||||
self._client._ph_client.capture(
|
||||
distinct_id=posthog_distinct_id or posthog_trace_id,
|
||||
event="$ai_generation",
|
||||
properties=event_properties,
|
||||
groups=posthog_groups,
|
||||
)
|
||||
|
||||
def parse(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""
|
||||
Parse structured output using OpenAI's 'responses.parse' method, but also track usage in PostHog.
|
||||
|
||||
Args:
|
||||
posthog_distinct_id: Optional ID to associate with the usage event.
|
||||
posthog_trace_id: Optional trace UUID for linking events.
|
||||
posthog_properties: Optional dictionary of extra properties to include in the event.
|
||||
posthog_privacy_mode: Whether to anonymize the input and output.
|
||||
posthog_groups: Optional dictionary of groups to associate with the event.
|
||||
**kwargs: Any additional parameters for the OpenAI Responses Parse API.
|
||||
|
||||
Returns:
|
||||
The response from OpenAI's responses.parse call.
|
||||
"""
|
||||
return call_llm_and_track_usage(
|
||||
posthog_distinct_id,
|
||||
self._client._ph_client,
|
||||
"openai",
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
self._client.base_url,
|
||||
self._original.parse,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class WrappedChat:
|
||||
"""Wrapper for OpenAI chat that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: OpenAI, original_chat):
|
||||
self._client = client
|
||||
self._original = original_chat
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original chat object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
@property
|
||||
def completions(self):
|
||||
return WrappedCompletions(self._client, self._original.completions)
|
||||
|
||||
|
||||
class WrappedCompletions:
|
||||
"""Wrapper for OpenAI chat completions that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: OpenAI, original_completions):
|
||||
self._client = client
|
||||
self._original = original_completions
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original completions object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
def create(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
if kwargs.get("stream", False):
|
||||
return self._create_streaming(
|
||||
posthog_distinct_id,
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return call_llm_and_track_usage(
|
||||
posthog_distinct_id,
|
||||
self._client._ph_client,
|
||||
"openai",
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
self._client.base_url,
|
||||
self._original.create,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _create_streaming(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str],
|
||||
posthog_trace_id: Optional[str],
|
||||
posthog_properties: Optional[Dict[str, Any]],
|
||||
posthog_privacy_mode: bool,
|
||||
posthog_groups: Optional[Dict[str, Any]],
|
||||
**kwargs: Any,
|
||||
):
|
||||
start_time = time.time()
|
||||
usage_stats: Dict[str, int] = {}
|
||||
accumulated_content = []
|
||||
accumulated_tools = {}
|
||||
if "stream_options" not in kwargs:
|
||||
kwargs["stream_options"] = {}
|
||||
kwargs["stream_options"]["include_usage"] = True
|
||||
response = self._original.create(**kwargs)
|
||||
|
||||
def generator():
|
||||
nonlocal usage_stats
|
||||
nonlocal accumulated_content # noqa: F824
|
||||
nonlocal accumulated_tools # noqa: F824
|
||||
|
||||
try:
|
||||
for chunk in response:
|
||||
if hasattr(chunk, "usage") and chunk.usage:
|
||||
usage_stats = {
|
||||
k: getattr(chunk.usage, k, 0)
|
||||
for k in [
|
||||
"prompt_tokens",
|
||||
"completion_tokens",
|
||||
"total_tokens",
|
||||
]
|
||||
}
|
||||
|
||||
# Add support for cached tokens
|
||||
if hasattr(chunk.usage, "prompt_tokens_details") and hasattr(
|
||||
chunk.usage.prompt_tokens_details, "cached_tokens"
|
||||
):
|
||||
usage_stats["cache_read_input_tokens"] = (
|
||||
chunk.usage.prompt_tokens_details.cached_tokens
|
||||
)
|
||||
|
||||
if hasattr(chunk.usage, "output_tokens_details") and hasattr(
|
||||
chunk.usage.output_tokens_details, "reasoning_tokens"
|
||||
):
|
||||
usage_stats["reasoning_tokens"] = (
|
||||
chunk.usage.output_tokens_details.reasoning_tokens
|
||||
)
|
||||
|
||||
if (
|
||||
hasattr(chunk, "choices")
|
||||
and chunk.choices
|
||||
and len(chunk.choices) > 0
|
||||
):
|
||||
if chunk.choices[0].delta and chunk.choices[0].delta.content:
|
||||
content = chunk.choices[0].delta.content
|
||||
if content:
|
||||
accumulated_content.append(content)
|
||||
|
||||
# Process tool calls
|
||||
tool_calls = getattr(chunk.choices[0].delta, "tool_calls", None)
|
||||
if tool_calls:
|
||||
for tool_call in tool_calls:
|
||||
index = tool_call.index
|
||||
if index not in accumulated_tools:
|
||||
accumulated_tools[index] = tool_call
|
||||
else:
|
||||
# Append arguments for existing tool calls
|
||||
if hasattr(tool_call, "function") and hasattr(
|
||||
tool_call.function, "arguments"
|
||||
):
|
||||
accumulated_tools[
|
||||
index
|
||||
].function.arguments += (
|
||||
tool_call.function.arguments
|
||||
)
|
||||
|
||||
yield chunk
|
||||
|
||||
finally:
|
||||
end_time = time.time()
|
||||
latency = end_time - start_time
|
||||
output = "".join(accumulated_content)
|
||||
tools = list(accumulated_tools.values()) if accumulated_tools else None
|
||||
self._capture_streaming_event(
|
||||
posthog_distinct_id,
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
kwargs,
|
||||
usage_stats,
|
||||
latency,
|
||||
output,
|
||||
tools,
|
||||
)
|
||||
|
||||
return generator()
|
||||
|
||||
def _capture_streaming_event(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str],
|
||||
posthog_trace_id: Optional[str],
|
||||
posthog_properties: Optional[Dict[str, Any]],
|
||||
posthog_privacy_mode: bool,
|
||||
posthog_groups: Optional[Dict[str, Any]],
|
||||
kwargs: Dict[str, Any],
|
||||
usage_stats: Dict[str, int],
|
||||
latency: float,
|
||||
output: Any,
|
||||
tool_calls: Optional[List[Dict[str, Any]]] = None,
|
||||
):
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
event_properties = {
|
||||
"$ai_provider": "openai",
|
||||
"$ai_model": kwargs.get("model"),
|
||||
"$ai_model_parameters": get_model_params(kwargs),
|
||||
"$ai_input": with_privacy_mode(
|
||||
self._client._ph_client, posthog_privacy_mode, kwargs.get("messages")
|
||||
),
|
||||
"$ai_output_choices": with_privacy_mode(
|
||||
self._client._ph_client,
|
||||
posthog_privacy_mode,
|
||||
[{"content": output, "role": "assistant"}],
|
||||
),
|
||||
"$ai_http_status": 200,
|
||||
"$ai_input_tokens": usage_stats.get("prompt_tokens", 0),
|
||||
"$ai_output_tokens": usage_stats.get("completion_tokens", 0),
|
||||
"$ai_cache_read_input_tokens": usage_stats.get(
|
||||
"cache_read_input_tokens", 0
|
||||
),
|
||||
"$ai_reasoning_tokens": usage_stats.get("reasoning_tokens", 0),
|
||||
"$ai_latency": latency,
|
||||
"$ai_trace_id": posthog_trace_id,
|
||||
"$ai_base_url": str(self._client.base_url),
|
||||
**(posthog_properties or {}),
|
||||
}
|
||||
|
||||
if tool_calls:
|
||||
event_properties["$ai_tools"] = with_privacy_mode(
|
||||
self._client._ph_client,
|
||||
posthog_privacy_mode,
|
||||
tool_calls,
|
||||
)
|
||||
|
||||
if posthog_distinct_id is None:
|
||||
event_properties["$process_person_profile"] = False
|
||||
|
||||
if hasattr(self._client._ph_client, "capture"):
|
||||
self._client._ph_client.capture(
|
||||
distinct_id=posthog_distinct_id or posthog_trace_id,
|
||||
event="$ai_generation",
|
||||
properties=event_properties,
|
||||
groups=posthog_groups,
|
||||
)
|
||||
|
||||
|
||||
class WrappedEmbeddings:
|
||||
"""Wrapper for OpenAI embeddings that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: OpenAI, original_embeddings):
|
||||
self._client = client
|
||||
self._original = original_embeddings
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original embeddings object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
def create(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""
|
||||
Create an embedding using OpenAI's 'embeddings.create' method, but also track usage in PostHog.
|
||||
|
||||
Args:
|
||||
posthog_distinct_id: Optional ID to associate with the usage event.
|
||||
posthog_trace_id: Optional trace UUID for linking events.
|
||||
posthog_properties: Optional dictionary of extra properties to include in the event.
|
||||
posthog_privacy_mode: Whether to anonymize the input and output.
|
||||
posthog_groups: Optional dictionary of groups to associate with the event.
|
||||
**kwargs: Any additional parameters for the OpenAI Embeddings API.
|
||||
|
||||
Returns:
|
||||
The response from OpenAI's embeddings.create call.
|
||||
"""
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
start_time = time.time()
|
||||
response = self._original.create(**kwargs)
|
||||
end_time = time.time()
|
||||
|
||||
# Extract usage statistics if available
|
||||
usage_stats = {}
|
||||
if hasattr(response, "usage") and response.usage:
|
||||
usage_stats = {
|
||||
"prompt_tokens": getattr(response.usage, "prompt_tokens", 0),
|
||||
"total_tokens": getattr(response.usage, "total_tokens", 0),
|
||||
}
|
||||
|
||||
latency = end_time - start_time
|
||||
|
||||
# Build the event properties
|
||||
event_properties = {
|
||||
"$ai_provider": "openai",
|
||||
"$ai_model": kwargs.get("model"),
|
||||
"$ai_input": with_privacy_mode(
|
||||
self._client._ph_client, posthog_privacy_mode, kwargs.get("input")
|
||||
),
|
||||
"$ai_http_status": 200,
|
||||
"$ai_input_tokens": usage_stats.get("prompt_tokens", 0),
|
||||
"$ai_latency": latency,
|
||||
"$ai_trace_id": posthog_trace_id,
|
||||
"$ai_base_url": str(self._client.base_url),
|
||||
**(posthog_properties or {}),
|
||||
}
|
||||
|
||||
if posthog_distinct_id is None:
|
||||
event_properties["$process_person_profile"] = False
|
||||
|
||||
# Send capture event for embeddings
|
||||
if hasattr(self._client._ph_client, "capture"):
|
||||
self._client._ph_client.capture(
|
||||
distinct_id=posthog_distinct_id or posthog_trace_id,
|
||||
event="$ai_embedding",
|
||||
properties=event_properties,
|
||||
groups=posthog_groups,
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
class WrappedBeta:
|
||||
"""Wrapper for OpenAI beta features that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: OpenAI, original_beta):
|
||||
self._client = client
|
||||
self._original = original_beta
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original beta object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
@property
|
||||
def chat(self):
|
||||
return WrappedBetaChat(self._client, self._original.chat)
|
||||
|
||||
|
||||
class WrappedBetaChat:
|
||||
"""Wrapper for OpenAI beta chat that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: OpenAI, original_beta_chat):
|
||||
self._client = client
|
||||
self._original = original_beta_chat
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original beta chat object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
@property
|
||||
def completions(self):
|
||||
return WrappedBetaCompletions(self._client, self._original.completions)
|
||||
|
||||
|
||||
class WrappedBetaCompletions:
|
||||
"""Wrapper for OpenAI beta chat completions that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: OpenAI, original_beta_completions):
|
||||
self._client = client
|
||||
self._original = original_beta_completions
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original beta completions object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
def parse(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
return call_llm_and_track_usage(
|
||||
posthog_distinct_id,
|
||||
self._client._ph_client,
|
||||
"openai",
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
self._client.base_url,
|
||||
self._original.parse,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -0,0 +1,639 @@
|
||||
import time
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
raise ModuleNotFoundError(
|
||||
"Please install the OpenAI SDK to use this feature: 'pip install openai'"
|
||||
)
|
||||
|
||||
from posthog.ai.utils import (
|
||||
call_llm_and_track_usage_async,
|
||||
get_model_params,
|
||||
with_privacy_mode,
|
||||
)
|
||||
from posthog.client import Client as PostHogClient
|
||||
|
||||
|
||||
class AsyncOpenAI(openai.AsyncOpenAI):
|
||||
"""
|
||||
An async wrapper around the OpenAI SDK that automatically sends LLM usage events to PostHog.
|
||||
"""
|
||||
|
||||
_ph_client: PostHogClient
|
||||
|
||||
def __init__(self, posthog_client: PostHogClient, **kwargs):
|
||||
"""
|
||||
Args:
|
||||
api_key: OpenAI API key.
|
||||
posthog_client: If provided, events will be captured via this client instead
|
||||
of the global posthog.
|
||||
**openai_config: Any additional keyword args to set on openai (e.g. organization="xxx").
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self._ph_client = posthog_client
|
||||
|
||||
# Store original objects after parent initialization (only if they exist)
|
||||
self._original_chat = getattr(self, "chat", None)
|
||||
self._original_embeddings = getattr(self, "embeddings", None)
|
||||
self._original_beta = getattr(self, "beta", None)
|
||||
self._original_responses = getattr(self, "responses", None)
|
||||
|
||||
# Replace with wrapped versions (only if originals exist)
|
||||
if self._original_chat is not None:
|
||||
self.chat = WrappedChat(self, self._original_chat)
|
||||
|
||||
if self._original_embeddings is not None:
|
||||
self.embeddings = WrappedEmbeddings(self, self._original_embeddings)
|
||||
|
||||
if self._original_beta is not None:
|
||||
self.beta = WrappedBeta(self, self._original_beta)
|
||||
|
||||
if self._original_responses is not None:
|
||||
self.responses = WrappedResponses(self, self._original_responses)
|
||||
|
||||
|
||||
class WrappedResponses:
|
||||
"""Async wrapper for OpenAI responses that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: AsyncOpenAI, original_responses):
|
||||
self._client = client
|
||||
self._original = original_responses
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original responses object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
async def create(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
if kwargs.get("stream", False):
|
||||
return await self._create_streaming(
|
||||
posthog_distinct_id,
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return await call_llm_and_track_usage_async(
|
||||
posthog_distinct_id,
|
||||
self._client._ph_client,
|
||||
"openai",
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
self._client.base_url,
|
||||
self._original.create,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
async def _create_streaming(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str],
|
||||
posthog_trace_id: Optional[str],
|
||||
posthog_properties: Optional[Dict[str, Any]],
|
||||
posthog_privacy_mode: bool,
|
||||
posthog_groups: Optional[Dict[str, Any]],
|
||||
**kwargs: Any,
|
||||
):
|
||||
start_time = time.time()
|
||||
usage_stats: Dict[str, int] = {}
|
||||
final_content = []
|
||||
response = await self._original.create(**kwargs)
|
||||
|
||||
async def async_generator():
|
||||
nonlocal usage_stats
|
||||
nonlocal final_content # noqa: F824
|
||||
|
||||
try:
|
||||
async for chunk in response:
|
||||
if hasattr(chunk, "type") and chunk.type == "response.completed":
|
||||
res = chunk.response
|
||||
if res.output and len(res.output) > 0:
|
||||
final_content.append(res.output[0])
|
||||
|
||||
if hasattr(chunk, "usage") and chunk.usage:
|
||||
usage_stats = {
|
||||
k: getattr(chunk.usage, k, 0)
|
||||
for k in [
|
||||
"input_tokens",
|
||||
"output_tokens",
|
||||
"total_tokens",
|
||||
]
|
||||
}
|
||||
|
||||
# Add support for cached tokens
|
||||
if hasattr(chunk.usage, "output_tokens_details") and hasattr(
|
||||
chunk.usage.output_tokens_details, "reasoning_tokens"
|
||||
):
|
||||
usage_stats["reasoning_tokens"] = (
|
||||
chunk.usage.output_tokens_details.reasoning_tokens
|
||||
)
|
||||
|
||||
if hasattr(chunk.usage, "input_tokens_details") and hasattr(
|
||||
chunk.usage.input_tokens_details, "cached_tokens"
|
||||
):
|
||||
usage_stats["cache_read_input_tokens"] = (
|
||||
chunk.usage.input_tokens_details.cached_tokens
|
||||
)
|
||||
|
||||
yield chunk
|
||||
|
||||
finally:
|
||||
end_time = time.time()
|
||||
latency = end_time - start_time
|
||||
output = final_content
|
||||
await self._capture_streaming_event(
|
||||
posthog_distinct_id,
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
kwargs,
|
||||
usage_stats,
|
||||
latency,
|
||||
output,
|
||||
)
|
||||
|
||||
return async_generator()
|
||||
|
||||
async def _capture_streaming_event(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str],
|
||||
posthog_trace_id: Optional[str],
|
||||
posthog_properties: Optional[Dict[str, Any]],
|
||||
posthog_privacy_mode: bool,
|
||||
posthog_groups: Optional[Dict[str, Any]],
|
||||
kwargs: Dict[str, Any],
|
||||
usage_stats: Dict[str, int],
|
||||
latency: float,
|
||||
output: Any,
|
||||
tool_calls: Optional[List[Dict[str, Any]]] = None,
|
||||
):
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
event_properties = {
|
||||
"$ai_provider": "openai",
|
||||
"$ai_model": kwargs.get("model"),
|
||||
"$ai_model_parameters": get_model_params(kwargs),
|
||||
"$ai_input": with_privacy_mode(
|
||||
self._client._ph_client, posthog_privacy_mode, kwargs.get("input")
|
||||
),
|
||||
"$ai_output_choices": with_privacy_mode(
|
||||
self._client._ph_client,
|
||||
posthog_privacy_mode,
|
||||
output,
|
||||
),
|
||||
"$ai_http_status": 200,
|
||||
"$ai_input_tokens": usage_stats.get("input_tokens", 0),
|
||||
"$ai_output_tokens": usage_stats.get("output_tokens", 0),
|
||||
"$ai_cache_read_input_tokens": usage_stats.get(
|
||||
"cache_read_input_tokens", 0
|
||||
),
|
||||
"$ai_reasoning_tokens": usage_stats.get("reasoning_tokens", 0),
|
||||
"$ai_latency": latency,
|
||||
"$ai_trace_id": posthog_trace_id,
|
||||
"$ai_base_url": str(self._client.base_url),
|
||||
**(posthog_properties or {}),
|
||||
}
|
||||
|
||||
if tool_calls:
|
||||
event_properties["$ai_tools"] = with_privacy_mode(
|
||||
self._client._ph_client,
|
||||
posthog_privacy_mode,
|
||||
tool_calls,
|
||||
)
|
||||
|
||||
if posthog_distinct_id is None:
|
||||
event_properties["$process_person_profile"] = False
|
||||
|
||||
if hasattr(self._client._ph_client, "capture"):
|
||||
self._client._ph_client.capture(
|
||||
distinct_id=posthog_distinct_id or posthog_trace_id,
|
||||
event="$ai_generation",
|
||||
properties=event_properties,
|
||||
groups=posthog_groups,
|
||||
)
|
||||
|
||||
async def parse(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""
|
||||
Parse structured output using OpenAI's 'responses.parse' method, but also track usage in PostHog.
|
||||
|
||||
Args:
|
||||
posthog_distinct_id: Optional ID to associate with the usage event.
|
||||
posthog_trace_id: Optional trace UUID for linking events.
|
||||
posthog_properties: Optional dictionary of extra properties to include in the event.
|
||||
posthog_privacy_mode: Whether to anonymize the input and output.
|
||||
posthog_groups: Optional dictionary of groups to associate with the event.
|
||||
**kwargs: Any additional parameters for the OpenAI Responses Parse API.
|
||||
|
||||
Returns:
|
||||
The response from OpenAI's responses.parse call.
|
||||
"""
|
||||
return await call_llm_and_track_usage_async(
|
||||
posthog_distinct_id,
|
||||
self._client._ph_client,
|
||||
"openai",
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
self._client.base_url,
|
||||
self._original.parse,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class WrappedChat:
|
||||
"""Async wrapper for OpenAI chat that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: AsyncOpenAI, original_chat):
|
||||
self._client = client
|
||||
self._original = original_chat
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original chat object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
@property
|
||||
def completions(self):
|
||||
return WrappedCompletions(self._client, self._original.completions)
|
||||
|
||||
|
||||
class WrappedCompletions:
|
||||
"""Async wrapper for OpenAI chat completions that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: AsyncOpenAI, original_completions):
|
||||
self._client = client
|
||||
self._original = original_completions
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original completions object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
async def create(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
# If streaming, handle streaming specifically
|
||||
if kwargs.get("stream", False):
|
||||
return await self._create_streaming(
|
||||
posthog_distinct_id,
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
response = await call_llm_and_track_usage_async(
|
||||
posthog_distinct_id,
|
||||
self._client._ph_client,
|
||||
"openai",
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
self._client.base_url,
|
||||
self._original.create,
|
||||
**kwargs,
|
||||
)
|
||||
return response
|
||||
|
||||
async def _create_streaming(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str],
|
||||
posthog_trace_id: Optional[str],
|
||||
posthog_properties: Optional[Dict[str, Any]],
|
||||
posthog_privacy_mode: bool,
|
||||
posthog_groups: Optional[Dict[str, Any]],
|
||||
**kwargs: Any,
|
||||
):
|
||||
start_time = time.time()
|
||||
usage_stats: Dict[str, int] = {}
|
||||
accumulated_content = []
|
||||
accumulated_tools = {}
|
||||
|
||||
if "stream_options" not in kwargs:
|
||||
kwargs["stream_options"] = {}
|
||||
kwargs["stream_options"]["include_usage"] = True
|
||||
response = await self._original.create(**kwargs)
|
||||
|
||||
async def async_generator():
|
||||
nonlocal usage_stats
|
||||
nonlocal accumulated_content # noqa: F824
|
||||
nonlocal accumulated_tools # noqa: F824
|
||||
|
||||
try:
|
||||
async for chunk in response:
|
||||
if hasattr(chunk, "usage") and chunk.usage:
|
||||
usage_stats = {
|
||||
k: getattr(chunk.usage, k, 0)
|
||||
for k in [
|
||||
"prompt_tokens",
|
||||
"completion_tokens",
|
||||
"total_tokens",
|
||||
]
|
||||
}
|
||||
|
||||
# Add support for cached tokens
|
||||
if hasattr(chunk.usage, "prompt_tokens_details") and hasattr(
|
||||
chunk.usage.prompt_tokens_details, "cached_tokens"
|
||||
):
|
||||
usage_stats["cache_read_input_tokens"] = (
|
||||
chunk.usage.prompt_tokens_details.cached_tokens
|
||||
)
|
||||
|
||||
if hasattr(chunk.usage, "output_tokens_details") and hasattr(
|
||||
chunk.usage.output_tokens_details, "reasoning_tokens"
|
||||
):
|
||||
usage_stats["reasoning_tokens"] = (
|
||||
chunk.usage.output_tokens_details.reasoning_tokens
|
||||
)
|
||||
|
||||
if (
|
||||
hasattr(chunk, "choices")
|
||||
and chunk.choices
|
||||
and len(chunk.choices) > 0
|
||||
):
|
||||
if chunk.choices[0].delta and chunk.choices[0].delta.content:
|
||||
content = chunk.choices[0].delta.content
|
||||
if content:
|
||||
accumulated_content.append(content)
|
||||
|
||||
# Process tool calls
|
||||
tool_calls = getattr(chunk.choices[0].delta, "tool_calls", None)
|
||||
if tool_calls:
|
||||
for tool_call in tool_calls:
|
||||
index = tool_call.index
|
||||
if index not in accumulated_tools:
|
||||
accumulated_tools[index] = tool_call
|
||||
else:
|
||||
# Append arguments for existing tool calls
|
||||
if hasattr(tool_call, "function") and hasattr(
|
||||
tool_call.function, "arguments"
|
||||
):
|
||||
accumulated_tools[
|
||||
index
|
||||
].function.arguments += (
|
||||
tool_call.function.arguments
|
||||
)
|
||||
|
||||
yield chunk
|
||||
|
||||
finally:
|
||||
end_time = time.time()
|
||||
latency = end_time - start_time
|
||||
output = "".join(accumulated_content)
|
||||
tools = list(accumulated_tools.values()) if accumulated_tools else None
|
||||
await self._capture_streaming_event(
|
||||
posthog_distinct_id,
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
kwargs,
|
||||
usage_stats,
|
||||
latency,
|
||||
output,
|
||||
tools,
|
||||
)
|
||||
|
||||
return async_generator()
|
||||
|
||||
async def _capture_streaming_event(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str],
|
||||
posthog_trace_id: Optional[str],
|
||||
posthog_properties: Optional[Dict[str, Any]],
|
||||
posthog_privacy_mode: bool,
|
||||
posthog_groups: Optional[Dict[str, Any]],
|
||||
kwargs: Dict[str, Any],
|
||||
usage_stats: Dict[str, int],
|
||||
latency: float,
|
||||
output: Any,
|
||||
tool_calls: Optional[List[Dict[str, Any]]] = None,
|
||||
):
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
event_properties = {
|
||||
"$ai_provider": "openai",
|
||||
"$ai_model": kwargs.get("model"),
|
||||
"$ai_model_parameters": get_model_params(kwargs),
|
||||
"$ai_input": with_privacy_mode(
|
||||
self._client._ph_client, posthog_privacy_mode, kwargs.get("messages")
|
||||
),
|
||||
"$ai_output_choices": with_privacy_mode(
|
||||
self._client._ph_client,
|
||||
posthog_privacy_mode,
|
||||
[{"content": output, "role": "assistant"}],
|
||||
),
|
||||
"$ai_http_status": 200,
|
||||
"$ai_input_tokens": usage_stats.get("prompt_tokens", 0),
|
||||
"$ai_output_tokens": usage_stats.get("completion_tokens", 0),
|
||||
"$ai_cache_read_input_tokens": usage_stats.get(
|
||||
"cache_read_input_tokens", 0
|
||||
),
|
||||
"$ai_reasoning_tokens": usage_stats.get("reasoning_tokens", 0),
|
||||
"$ai_latency": latency,
|
||||
"$ai_trace_id": posthog_trace_id,
|
||||
"$ai_base_url": str(self._client.base_url),
|
||||
**(posthog_properties or {}),
|
||||
}
|
||||
|
||||
if tool_calls:
|
||||
event_properties["$ai_tools"] = with_privacy_mode(
|
||||
self._client._ph_client,
|
||||
posthog_privacy_mode,
|
||||
tool_calls,
|
||||
)
|
||||
|
||||
if posthog_distinct_id is None:
|
||||
event_properties["$process_person_profile"] = False
|
||||
|
||||
if hasattr(self._client._ph_client, "capture"):
|
||||
self._client._ph_client.capture(
|
||||
distinct_id=posthog_distinct_id or posthog_trace_id,
|
||||
event="$ai_generation",
|
||||
properties=event_properties,
|
||||
groups=posthog_groups,
|
||||
)
|
||||
|
||||
|
||||
class WrappedEmbeddings:
|
||||
"""Async wrapper for OpenAI embeddings that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: AsyncOpenAI, original_embeddings):
|
||||
self._client = client
|
||||
self._original = original_embeddings
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original embeddings object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
async def create(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""
|
||||
Create an embedding using OpenAI's 'embeddings.create' method, but also track usage in PostHog.
|
||||
|
||||
Args:
|
||||
posthog_distinct_id: Optional ID to associate with the usage event.
|
||||
posthog_trace_id: Optional trace UUID for linking events.
|
||||
posthog_properties: Optional dictionary of extra properties to include in the event.
|
||||
posthog_privacy_mode: Whether to anonymize the input and output.
|
||||
posthog_groups: Optional dictionary of groups to associate with the event.
|
||||
**kwargs: Any additional parameters for the OpenAI Embeddings API.
|
||||
|
||||
Returns:
|
||||
The response from OpenAI's embeddings.create call.
|
||||
"""
|
||||
if posthog_trace_id is None:
|
||||
posthog_trace_id = str(uuid.uuid4())
|
||||
|
||||
start_time = time.time()
|
||||
response = await self._original.create(**kwargs)
|
||||
end_time = time.time()
|
||||
|
||||
# Extract usage statistics if available
|
||||
usage_stats = {}
|
||||
if hasattr(response, "usage") and response.usage:
|
||||
usage_stats = {
|
||||
"prompt_tokens": getattr(response.usage, "prompt_tokens", 0),
|
||||
"total_tokens": getattr(response.usage, "total_tokens", 0),
|
||||
}
|
||||
|
||||
latency = end_time - start_time
|
||||
|
||||
# Build the event properties
|
||||
event_properties = {
|
||||
"$ai_provider": "openai",
|
||||
"$ai_model": kwargs.get("model"),
|
||||
"$ai_input": with_privacy_mode(
|
||||
self._client._ph_client, posthog_privacy_mode, kwargs.get("input")
|
||||
),
|
||||
"$ai_http_status": 200,
|
||||
"$ai_input_tokens": usage_stats.get("prompt_tokens", 0),
|
||||
"$ai_latency": latency,
|
||||
"$ai_trace_id": posthog_trace_id,
|
||||
"$ai_base_url": str(self._client.base_url),
|
||||
**(posthog_properties or {}),
|
||||
}
|
||||
|
||||
if posthog_distinct_id is None:
|
||||
event_properties["$process_person_profile"] = False
|
||||
|
||||
# Send capture event for embeddings
|
||||
if hasattr(self._client._ph_client, "capture"):
|
||||
self._client._ph_client.capture(
|
||||
distinct_id=posthog_distinct_id or posthog_trace_id,
|
||||
event="$ai_embedding",
|
||||
properties=event_properties,
|
||||
groups=posthog_groups,
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
class WrappedBeta:
|
||||
"""Async wrapper for OpenAI beta features that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: AsyncOpenAI, original_beta):
|
||||
self._client = client
|
||||
self._original = original_beta
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original beta object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
@property
|
||||
def chat(self):
|
||||
return WrappedBetaChat(self._client, self._original.chat)
|
||||
|
||||
|
||||
class WrappedBetaChat:
|
||||
"""Async wrapper for OpenAI beta chat that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: AsyncOpenAI, original_beta_chat):
|
||||
self._client = client
|
||||
self._original = original_beta_chat
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original beta chat object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
@property
|
||||
def completions(self):
|
||||
return WrappedBetaCompletions(self._client, self._original.completions)
|
||||
|
||||
|
||||
class WrappedBetaCompletions:
|
||||
"""Async wrapper for OpenAI beta chat completions that tracks usage in PostHog."""
|
||||
|
||||
def __init__(self, client: AsyncOpenAI, original_beta_completions):
|
||||
self._client = client
|
||||
self._original = original_beta_completions
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Fallback to original beta completions object for any methods we don't explicitly handle."""
|
||||
return getattr(self._original, name)
|
||||
|
||||
async def parse(
|
||||
self,
|
||||
posthog_distinct_id: Optional[str] = None,
|
||||
posthog_trace_id: Optional[str] = None,
|
||||
posthog_properties: Optional[Dict[str, Any]] = None,
|
||||
posthog_privacy_mode: bool = False,
|
||||
posthog_groups: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
return await call_llm_and_track_usage_async(
|
||||
posthog_distinct_id,
|
||||
self._client._ph_client,
|
||||
"openai",
|
||||
posthog_trace_id,
|
||||
posthog_properties,
|
||||
posthog_privacy_mode,
|
||||
posthog_groups,
|
||||
self._client.base_url,
|
||||
self._original.parse,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -0,0 +1,95 @@
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
raise ModuleNotFoundError(
|
||||
"Please install the Open AI SDK to use this feature: 'pip install openai'"
|
||||
)
|
||||
|
||||
from posthog.ai.openai.openai import (
|
||||
WrappedBeta,
|
||||
WrappedChat,
|
||||
WrappedEmbeddings,
|
||||
WrappedResponses,
|
||||
)
|
||||
from posthog.ai.openai.openai_async import WrappedBeta as AsyncWrappedBeta
|
||||
from posthog.ai.openai.openai_async import WrappedChat as AsyncWrappedChat
|
||||
from posthog.ai.openai.openai_async import WrappedEmbeddings as AsyncWrappedEmbeddings
|
||||
from posthog.ai.openai.openai_async import WrappedResponses as AsyncWrappedResponses
|
||||
from posthog.client import Client as PostHogClient
|
||||
|
||||
|
||||
class AzureOpenAI(openai.AzureOpenAI):
|
||||
"""
|
||||
A wrapper around the Azure OpenAI SDK that automatically sends LLM usage events to PostHog.
|
||||
"""
|
||||
|
||||
_ph_client: PostHogClient
|
||||
|
||||
def __init__(self, posthog_client: PostHogClient, **kwargs):
|
||||
"""
|
||||
Args:
|
||||
api_key: Azure OpenAI API key.
|
||||
posthog_client: If provided, events will be captured via this client instead
|
||||
of the global posthog.
|
||||
**openai_config: Any additional keyword args to set on Azure OpenAI (e.g. azure_endpoint="xxx").
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self._ph_client = posthog_client
|
||||
|
||||
# Store original objects after parent initialization (only if they exist)
|
||||
self._original_chat = getattr(self, "chat", None)
|
||||
self._original_embeddings = getattr(self, "embeddings", None)
|
||||
self._original_beta = getattr(self, "beta", None)
|
||||
self._original_responses = getattr(self, "responses", None)
|
||||
|
||||
# Replace with wrapped versions (only if originals exist)
|
||||
if self._original_chat is not None:
|
||||
self.chat = WrappedChat(self, self._original_chat)
|
||||
|
||||
if self._original_embeddings is not None:
|
||||
self.embeddings = WrappedEmbeddings(self, self._original_embeddings)
|
||||
|
||||
if self._original_beta is not None:
|
||||
self.beta = WrappedBeta(self, self._original_beta)
|
||||
|
||||
if self._original_responses is not None:
|
||||
self.responses = WrappedResponses(self, self._original_responses)
|
||||
|
||||
|
||||
class AsyncAzureOpenAI(openai.AsyncAzureOpenAI):
|
||||
"""
|
||||
An async wrapper around the Azure OpenAI SDK that automatically sends LLM usage events to PostHog.
|
||||
"""
|
||||
|
||||
_ph_client: PostHogClient
|
||||
|
||||
def __init__(self, posthog_client: PostHogClient, **kwargs):
|
||||
"""
|
||||
Args:
|
||||
api_key: Azure OpenAI API key.
|
||||
posthog_client: If provided, events will be captured via this client instead
|
||||
of the global posthog.
|
||||
**openai_config: Any additional keyword args to set on Azure OpenAI (e.g. azure_endpoint="xxx").
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self._ph_client = posthog_client
|
||||
|
||||
# Store original objects after parent initialization (only if they exist)
|
||||
self._original_chat = getattr(self, "chat", None)
|
||||
self._original_embeddings = getattr(self, "embeddings", None)
|
||||
self._original_beta = getattr(self, "beta", None)
|
||||
self._original_responses = getattr(self, "responses", None)
|
||||
|
||||
# Replace with wrapped versions (only if originals exist)
|
||||
if self._original_chat is not None:
|
||||
self.chat = AsyncWrappedChat(self, self._original_chat)
|
||||
|
||||
if self._original_embeddings is not None:
|
||||
self.embeddings = AsyncWrappedEmbeddings(self, self._original_embeddings)
|
||||
|
||||
if self._original_beta is not None:
|
||||
self.beta = AsyncWrappedBeta(self, self._original_beta)
|
||||
|
||||
# Only add responses if available (newer OpenAI versions)
|
||||
if self._original_responses is not None:
|
||||
self.responses = AsyncWrappedResponses(self, self._original_responses)
|
||||
Reference in New Issue
Block a user