chore: 添加虚拟环境到仓库
- 添加 backend_service/venv 虚拟环境 - 包含所有Python依赖包 - 注意:虚拟环境约393MB,包含12655个文件
This commit is contained in:
@@ -0,0 +1,953 @@
|
||||
# -------------------------------------------------------------------------
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License. See License.txt in the project root for
|
||||
# license information.
|
||||
# --------------------------------------------------------------------------
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import logging
|
||||
import tempfile
|
||||
from collections.abc import Callable
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import onnx
|
||||
|
||||
from .calibrate import CalibrationDataReader, CalibrationMethod, TensorsData, create_calibrator
|
||||
from .onnx_quantizer import ONNXQuantizer
|
||||
from .qdq_quantizer import QDQQuantizer
|
||||
from .quant_utils import (
|
||||
MODEL_SIZE_THRESHOLD,
|
||||
QuantFormat,
|
||||
QuantizationMode,
|
||||
QuantType,
|
||||
load_model_with_shape_infer,
|
||||
model_has_pre_process_metadata,
|
||||
save_and_reload_model_with_shape_infer,
|
||||
update_opset_version,
|
||||
)
|
||||
from .registry import IntegerOpsRegistry, QDQRegistry, QLinearOpsRegistry
|
||||
from .tensor_quant_overrides import TensorQuantOverridesHelper
|
||||
|
||||
|
||||
class QuantConfig:
|
||||
def __init__(
|
||||
self,
|
||||
activation_type=QuantType.QUInt8,
|
||||
weight_type=QuantType.QInt8,
|
||||
op_types_to_quantize=None,
|
||||
nodes_to_quantize=None,
|
||||
nodes_to_exclude=None,
|
||||
per_channel=False,
|
||||
reduce_range=False,
|
||||
use_external_data_format=False,
|
||||
):
|
||||
"""
|
||||
This is the Base class for both Static and Dynamic Quantize Configuration
|
||||
Args:
|
||||
activation_type:
|
||||
quantization data type of activation. Please refer to
|
||||
https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
|
||||
weight_type:
|
||||
quantization data type of weight. Please refer to
|
||||
https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
|
||||
op_types_to_quantize:
|
||||
specify the types of operators to quantize, like ['Conv'] to quantize Conv only.
|
||||
It quantizes all supported operators by default.
|
||||
nodes_to_quantize:
|
||||
List of nodes names to quantize. When this list is not None only the nodes in this list
|
||||
are quantized.
|
||||
example:
|
||||
[
|
||||
'Conv__224',
|
||||
'Conv__252'
|
||||
]
|
||||
nodes_to_exclude:
|
||||
List of nodes names to exclude. The nodes in this list will be excluded from quantization
|
||||
when it is not None.
|
||||
per_channel: quantize weights per channel
|
||||
reduce_range:
|
||||
quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine,
|
||||
especially for per-channel mode
|
||||
use_external_data_format: option used for large size (>2GB) model. Set to False by default.
|
||||
"""
|
||||
|
||||
nodes_to_exclude = nodes_to_exclude or []
|
||||
nodes_to_quantize = nodes_to_quantize or []
|
||||
op_types_to_quantize = op_types_to_quantize or []
|
||||
self.op_types_to_quantize = op_types_to_quantize
|
||||
self.per_channel = per_channel
|
||||
self.reduce_range = reduce_range
|
||||
self.weight_type = weight_type
|
||||
self.activation_type = activation_type
|
||||
self.nodes_to_quantize = nodes_to_quantize
|
||||
self.nodes_to_exclude = nodes_to_exclude
|
||||
self.use_external_data_format = use_external_data_format
|
||||
|
||||
|
||||
class StaticQuantConfig(QuantConfig):
|
||||
def __init__(
|
||||
self,
|
||||
calibration_data_reader: CalibrationDataReader,
|
||||
calibrate_method=CalibrationMethod.MinMax,
|
||||
quant_format=QuantFormat.QDQ,
|
||||
activation_type=QuantType.QInt8,
|
||||
weight_type=QuantType.QInt8,
|
||||
op_types_to_quantize=None,
|
||||
nodes_to_quantize=None,
|
||||
nodes_to_exclude=None,
|
||||
per_channel=False,
|
||||
reduce_range=False,
|
||||
use_external_data_format=False,
|
||||
calibration_providers=None,
|
||||
extra_options=None,
|
||||
):
|
||||
"""
|
||||
This is the derived class for static Quantize Configuration
|
||||
|
||||
Args:
|
||||
calibration_data_reader:
|
||||
a calibration data reader. It enumerates calibration data and generates inputs for the original model.
|
||||
calibrate_method:
|
||||
Current calibration methods supported are MinMax, Entropy and Percentile.
|
||||
quant_format: QuantFormat{QOperator, QDQ}.
|
||||
QOperator format quantizes the model with quantized operators directly.
|
||||
QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor.
|
||||
calibration_providers: Execution providers to run the session during calibration. Default is None which uses
|
||||
[ "CPUExecutionProvider" ].
|
||||
extra_options:
|
||||
key value pair dictionary for various options in different case. Current used:
|
||||
extra.Sigmoid.nnapi = True/False (Default is False)
|
||||
ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False).
|
||||
WeightSymmetric = True/False: symmetrize calibration data for weights (default is True).
|
||||
EnableSubgraph = True/False : Default is False. If enabled, subgraph will be quantized.
|
||||
Dyanmic mode currently is supported. Will support more in future.
|
||||
ForceQuantizeNoInputCheck = True/False :
|
||||
By default, some latent operators like maxpool, transpose, do not quantize if their input is not
|
||||
quantized already. Setting to True to force such operator always quantize input and so generate
|
||||
quantized output. Also the True behavior could be disabled per node using the nodes_to_exclude.
|
||||
MatMulConstBOnly = True/False:
|
||||
Default is False for static mode. If enabled, only MatMul with const B will be quantized.
|
||||
AddQDQPairToWeight = True/False :
|
||||
Default is False which quantizes floating-point weight and feeds it to solely inserted
|
||||
DeQuantizeLinear node. If True, it remains floating-point weight and inserts both
|
||||
QuantizeLinear/DeQuantizeLinear nodes to weight.
|
||||
OpTypesToExcludeOutputQuantization = list of op type :
|
||||
Default is []. If any op type is specified, it won't quantize the output of ops with this
|
||||
specific op types.
|
||||
DedicatedQDQPair = True/False :
|
||||
Default is False. When inserting QDQ pair, multiple nodes can share a single QDQ pair as their
|
||||
inputs. If True, it will create identical and dedicated QDQ pair for each node.
|
||||
QDQOpTypePerChannelSupportToAxis = dictionary :
|
||||
Default is {}. Set channel axis for specific op type, for example: {'MatMul': 1}, and it's
|
||||
effective only when per channel quantization is supported and per_channel is True. If specific
|
||||
op type supports per channel quantization but not explicitly specified with channel axis,
|
||||
default channel axis will be used.
|
||||
CalibTensorRangeSymmetric = True/False :
|
||||
Default is False. If enabled, the final range of tensor during calibration will be explicitly
|
||||
set to symmetric to central point "0".
|
||||
CalibMovingAverage = True/False :
|
||||
Default is False. If enabled, the moving average of the minimum and maximum values will be
|
||||
computed when the calibration method selected is MinMax.
|
||||
CalibMovingAverageConstant = float :
|
||||
Default is 0.01. Constant smoothing factor to use when computing the moving average of the
|
||||
minimum and maximum values. Effective only when the calibration method selected is MinMax and
|
||||
when CalibMovingAverage is set to True.
|
||||
QuantizeBias = True/False :
|
||||
Default is True which quantizes floating-point biases and it solely inserts
|
||||
a DeQuantizeLinear node. If False, it remains floating-point bias and does not insert
|
||||
any quantization nodes associated with biases.
|
||||
This extra option is only effective when quant_format is QuantFormat.QDQ.
|
||||
SmoothQuant = True/False :
|
||||
Default is False. If enabled, SmoothQuant algorithm will be applied before quantization to do
|
||||
fake input channel quantization.
|
||||
SmoothQuantAlpha = float :
|
||||
Default is 0.5. It only works if SmoothQuant is True. It controls the difficulty of weight
|
||||
and activation quantization. A larger alpha value could be used on models with more significant
|
||||
activation outliers to migrate more quantization difficulty to weights.
|
||||
SmoothQuantFolding = True/False :
|
||||
Default is True. It only works if SmoothQuant is True. If enabled, inserted Mul ops during
|
||||
SmoothQuant will be folded into the previous op if the previous op is foldable.
|
||||
UseQDQContribOps = True/False :
|
||||
Default is False. If enabled, the inserted QuantizeLinear and DequantizeLinear ops will have the
|
||||
`com.microsoft` domain, which forces use of ONNX Runtime's QuantizeLinear and DequantizeLinear
|
||||
contrib op implementations. The contrib op implementations may support features not standardized
|
||||
into the ONNX specification (e.g., 16-bit quantization types).
|
||||
MinimumRealRange = float|None :
|
||||
Default is None. If set to a floating-point value, the calculation of the quantization parameters
|
||||
(i.e., scale and zero point) will enforce a minimum range between rmin and rmax. If (rmax-rmin)
|
||||
is less than the specified minimum range, rmax will be set to rmin + MinimumRealRange. This is
|
||||
necessary for EPs like QNN that require a minimum floating-point range when determining
|
||||
quantization parameters.
|
||||
TensorQuantOverrides = dictionary :
|
||||
Default is {}. Set tensor quantization overrides. The key is a tensor name and the value is a
|
||||
list of dictionaries. For per-tensor quantization, the list contains a single dictionary. For
|
||||
per-channel quantization, the list contains a dictionary for each channel in the tensor.
|
||||
Each dictionary contains optional overrides with the following keys and values.
|
||||
'quant_type' = QuantType : The tensor's quantization data type.
|
||||
'scale' = Float : The scale value to use. Must also specify `zero_point` if set.
|
||||
'zero_point' = Int : The zero-point value to use. Must also specify `scale` is set.
|
||||
'symmetric' = Bool : If the tensor should use symmetric quantization. Invalid if also
|
||||
set `scale` or `zero_point`.
|
||||
'reduce_range' = Bool : If the quantization range should be reduced. Invalid if also
|
||||
set `scale` or `zero_point`.
|
||||
'rmax' = Float : Override the maximum real tensor value in calibration data.
|
||||
Invalid if also set `scale` or `zero_point`.
|
||||
'rmin' = Float : Override the minimum real tensor value in calibration data.
|
||||
Invalid if also set `scale` or `zero_point`.
|
||||
QDQKeepRemovableActivations = True/False:
|
||||
Default is False. If true, "removable" activations (e.g., Clip or Relu) will not be removed, and
|
||||
will be explicitly represented in the QDQ model. If false, these activations are automatically
|
||||
removed if activations are asymmetrically quantized. Keeping these activations is necessary if
|
||||
optimizations or EP transformations will later remove QuantizeLinear/DequantizeLinear
|
||||
operators from the model.
|
||||
QDQDisableWeightAdjustForInt32Bias = True/False:
|
||||
Default is False. If true, QDQ quantizer will not adjust the weight's scale when the bias
|
||||
has a scale (input_scale * weight_scale) that is too small.
|
||||
execution_provider : A enum indicates the Execution Provider such as: CPU, TRT, NNAPI, SNE, etc.
|
||||
Raises:
|
||||
ValueError: Raise ValueError if execution provider is unknown
|
||||
"""
|
||||
|
||||
super().__init__(
|
||||
activation_type=activation_type,
|
||||
weight_type=weight_type,
|
||||
op_types_to_quantize=op_types_to_quantize,
|
||||
nodes_to_quantize=nodes_to_quantize,
|
||||
nodes_to_exclude=nodes_to_exclude,
|
||||
per_channel=per_channel,
|
||||
reduce_range=reduce_range,
|
||||
use_external_data_format=use_external_data_format,
|
||||
)
|
||||
self.calibration_data_reader = calibration_data_reader
|
||||
self.calibrate_method = calibrate_method
|
||||
self.quant_format = quant_format
|
||||
self.calibration_providers = calibration_providers
|
||||
self.extra_options = extra_options or {}
|
||||
|
||||
|
||||
def get_qdq_config(
|
||||
model_input: str | Path | onnx.ModelProto,
|
||||
calibration_data_reader: CalibrationDataReader,
|
||||
calibrate_method=CalibrationMethod.MinMax,
|
||||
calibrate_args: dict[str, Any] | None = None,
|
||||
activation_type=QuantType.QUInt8,
|
||||
weight_type=QuantType.QInt8,
|
||||
activation_symmetric: bool = False,
|
||||
weight_symmetric: bool | None = None,
|
||||
per_channel: bool = False,
|
||||
reduce_range: bool = False,
|
||||
keep_removable_activations: bool = False,
|
||||
min_real_range: float | None = None,
|
||||
tensor_quant_overrides: dict[str, list[dict[str, Any]]] | None = None,
|
||||
calibration_providers: list[str] | None = None,
|
||||
op_types_to_quantize: list[str] | None = None,
|
||||
nodes_to_exclude: list[str] | Callable[[onnx.ModelProto, onnx.NodeProto], bool] | None = None,
|
||||
extra_options: dict | None = None,
|
||||
) -> StaticQuantConfig:
|
||||
"""
|
||||
Returns a configuration suitable that quantizes the entire model to integer precision.
|
||||
|
||||
Params:
|
||||
model_input: Path to the input model file or ModelProto.
|
||||
calibration_data_reader: Calibration data reader.
|
||||
calibrate_methode: The calibration method. Defaults to MinMax.
|
||||
activation_type: The default activation quantization type. Defaults to QUInt8.
|
||||
weight_type: The default weight quantization type. Defaults to QInt8.
|
||||
activation_symmetric: True if activations should be quantized symmetrically (i.e, rmax == -rmin) by default.
|
||||
Defaults to false. For int8 and int16, this results in zero-point values of 0. For uint8 and uint16,
|
||||
the zero-point values are 127 and 32,767, respectively.
|
||||
weight_symmetric: True if weights should be quantized symmetrically (i.e., rmax == -rmin) by default.
|
||||
Defaults to None. If set to None, weight_symmetric is assumed true if a weight's quant type is a signed int.
|
||||
per_channel: Global option that determines if a fixed set of operator types should be quantized per-channel.
|
||||
Defaults to false. Alternatively, use the tensor-level `tensor_quant_overrides` to select individual operators
|
||||
and their quantization axes.
|
||||
reduce_range: quantize weights with 1 less bit of precision (e.g., 7 bits for QInt8). Defaults to false.
|
||||
May improve the accuracy for some models running on non-VNNI machine, especially for per-channel mode.
|
||||
keep_removable_activations: Defaults to false. If true, "removable" activations (e.g., Clip or Relu) will not
|
||||
be removed, and will be explicitly represented in the QDQ model. If false, these activations
|
||||
are automatically removed if activations are asymmetrically quantized. Keeping these activations
|
||||
is necessary if optimizations or EP transformations will later remove
|
||||
QuantizeLinear/DequantizeLinear operators from the model.
|
||||
min_real_range: Default is None. If set to a floating-point value, the calculation of the quantization parameters
|
||||
(i.e., scale and zero point) will enforce a minimum range between rmin and rmax. If (rmax - rmin)
|
||||
is less than the specified minimum range, rmax will be set to rmin + min_real_range.
|
||||
tensor_quant_overrides: tensor-level quantization overrides. Defaults to None.
|
||||
The key is a tensor name and the value is a list of dictionaries. For per-tensor quantization, the list
|
||||
contains a single dictionary. For per-channel quantization, the list contains either a dictionary for
|
||||
each channel in the tensor or a single dictionary that is assumed to apply to all channels. An 'axis'
|
||||
key must be present in the first dictionary for per-channel quantization.
|
||||
|
||||
Each dictionary contains optional overrides with the following keys and values.
|
||||
'quant_type' = QuantType : The tensor's quantization data type.
|
||||
'axis' = Int : The per-channel axis. Must be present for per-channel weights.
|
||||
'scale' = Float : The scale value to use. Must also specify `zero_point` if set.
|
||||
'zero_point' = Int : The zero-point value to use. Must also specify `scale` is set.
|
||||
'symmetric' = Bool : If the tensor should use symmetric quantization. Invalid if also
|
||||
set `scale` or `zero_point`.
|
||||
'reduce_range' = Bool : If the quantization range should be reduced. Invalid if also
|
||||
set `scale` or `zero_point`. Only valid for initializers.
|
||||
'rmax' = Float : Override the maximum real tensor value in calibration data.
|
||||
Invalid if also set `scale` or `zero_point`.
|
||||
'rmin' = Float : Override the minimum real tensor value in calibration data.
|
||||
Invalid if also set `scale` or `zero_point`.
|
||||
'convert' = Dict : A nested dictionary with the same keys for an activation
|
||||
tensor that should be converted to another quantization type.
|
||||
'convert["recv_nodes"] = Set : Set of node names that consume the converted activation,
|
||||
other nodes get the original type. If not specified,
|
||||
assume all consumer nodes get the converted type.
|
||||
calibration_providers: Execution providers to run the session during calibration. Default is None which uses
|
||||
[ "CPUExecutionProvider" ].
|
||||
op_types_to_quantize: List of operator types to quantize. If None, all operators other than Cast, DequantizeLinear,
|
||||
and QuantizeLinear are quantized.
|
||||
nodes_to_exclude: List of nodes names to exclude from quantization. Alternatively, can provide a function that
|
||||
accepts an onnx.ModelProto and onnx.NodeProto as arguments and returns true if the give onnx.NodeProto
|
||||
should be excluded from quantization.
|
||||
extra_options: Additional options specified as string key/value pairs. Refer to the documentation for
|
||||
`quantize_static` for valid keys and values.
|
||||
|
||||
Returns:
|
||||
A StaticQuantConfig object
|
||||
"""
|
||||
q16_types = {QuantType.QInt16, QuantType.QUInt16}
|
||||
q4_types = {QuantType.QInt4, QuantType.QUInt4}
|
||||
op_types_to_exclude = {"Cast", "DequantizeLinear", "QuantizeLinear"}
|
||||
|
||||
model = (
|
||||
model_input
|
||||
if isinstance(model_input, onnx.ModelProto)
|
||||
else onnx.load_model(model_input, load_external_data=False)
|
||||
)
|
||||
|
||||
op_types = set()
|
||||
model_has_external_data = False
|
||||
overrides_helper = TensorQuantOverridesHelper(
|
||||
copy.deepcopy(tensor_quant_overrides) if tensor_quant_overrides else {}
|
||||
)
|
||||
|
||||
# check if the model has external data.
|
||||
for initializer in model.graph.initializer:
|
||||
if onnx.external_data_helper.uses_external_data(initializer):
|
||||
model_has_external_data = True
|
||||
|
||||
op_types_to_quantize_set = set(op_types_to_quantize) if op_types_to_quantize else None
|
||||
nodes_to_exclude_set = set(nodes_to_exclude) if isinstance(nodes_to_exclude, list) else set()
|
||||
|
||||
# Iterate through nodes to get all operator types in the model and
|
||||
# call user's function to filter out nodes from quantization.
|
||||
for node in model.graph.node:
|
||||
if op_types_to_quantize_set and node.op_type not in op_types_to_quantize_set:
|
||||
continue
|
||||
if node.name in nodes_to_exclude_set:
|
||||
continue
|
||||
if callable(nodes_to_exclude) and nodes_to_exclude(model, node):
|
||||
nodes_to_exclude_set.add(node.name)
|
||||
else:
|
||||
op_types.add(node.op_type)
|
||||
|
||||
final_extra_options = {
|
||||
"MinimumRealRange": min_real_range,
|
||||
"QDQKeepRemovableActivations": keep_removable_activations,
|
||||
"ActivationSymmetric": activation_symmetric,
|
||||
"WeightSymmetric": weight_symmetric,
|
||||
"ForceQuantizeNoInputCheck": True,
|
||||
"TensorQuantOverrides": overrides_helper.get_dict(),
|
||||
}
|
||||
|
||||
# Pass along known calibration options
|
||||
if calibrate_args:
|
||||
calib_extra_options_keys = [
|
||||
("symmetric", "CalibTensorRangeSymmetric"),
|
||||
("moving_average", "CalibMovingAverage"),
|
||||
("averaging_constant", "CalibMovingAverageConstant"),
|
||||
("max_intermediate_outputs", "CalibMaxIntermediateOutputs"),
|
||||
("percentile", "CalibPercentile"),
|
||||
]
|
||||
calib_extra_options = {
|
||||
key: calibrate_args.get(name) for (name, key) in calib_extra_options_keys if name in calibrate_args
|
||||
}
|
||||
final_extra_options.update(calib_extra_options)
|
||||
|
||||
# ONNX opset < 21 does not support 16-bit quantization, so must use 'com.microsoft' domain
|
||||
# on Q/DQ operators if using 16-bit or 4-bit quantization.
|
||||
onnx_opset = next(x for x in model.opset_import if x.domain == "" or x.domain == "ai.onnx")
|
||||
if onnx_opset.version < 21:
|
||||
opset21_types = q16_types.union(q4_types)
|
||||
overrides_have_opset21_types = any(t in opset21_types for t in overrides_helper.get_quant_types())
|
||||
if activation_type in opset21_types or weight_type in opset21_types or overrides_have_opset21_types:
|
||||
final_extra_options["UseQDQContribOps"] = True
|
||||
|
||||
# Allow user's extra_options to override our final_extra_options.
|
||||
if extra_options:
|
||||
final_extra_options.update(extra_options)
|
||||
|
||||
return StaticQuantConfig(
|
||||
calibration_data_reader,
|
||||
calibrate_method=calibrate_method,
|
||||
quant_format=QuantFormat.QDQ,
|
||||
activation_type=activation_type,
|
||||
weight_type=weight_type,
|
||||
op_types_to_quantize=(
|
||||
op_types_to_quantize if op_types_to_quantize else list(op_types.difference(op_types_to_exclude))
|
||||
),
|
||||
nodes_to_exclude=list(nodes_to_exclude_set),
|
||||
per_channel=per_channel,
|
||||
reduce_range=reduce_range,
|
||||
use_external_data_format=(model_has_external_data or model.ByteSize() >= MODEL_SIZE_THRESHOLD),
|
||||
calibration_providers=calibration_providers,
|
||||
extra_options=final_extra_options,
|
||||
)
|
||||
|
||||
|
||||
class DynamicQuantConfig(QuantConfig):
|
||||
def __init__(
|
||||
self,
|
||||
weight_type=QuantType.QInt8,
|
||||
op_types_to_quantize=None,
|
||||
nodes_to_quantize=None,
|
||||
nodes_to_exclude=None,
|
||||
per_channel=False,
|
||||
reduce_range=False,
|
||||
use_external_data_format=False,
|
||||
extra_options=None,
|
||||
):
|
||||
"""
|
||||
This is a class for dynamic Quant Configuration
|
||||
|
||||
Args:
|
||||
extra_options: key value pair dictionary for various options in different case. Current used:
|
||||
extra.Sigmoid.nnapi = True/False (Default is False)
|
||||
ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False).
|
||||
WeightSymmetric = True/False: symmetrize calibration data for weights (default is True).
|
||||
EnableSubgraph = True/False :
|
||||
Default is False. If enabled, subgraph will be quantized. Dynamic mode currently is supported. Will
|
||||
support more in the future.
|
||||
ForceQuantizeNoInputCheck = True/False :
|
||||
By default, some latent operators like maxpool, transpose, do not quantize if their input is not
|
||||
quantized already. Setting to True to force such operator always quantize input and so generate
|
||||
quantized output. Also the True behavior could be disabled per node using the nodes_to_exclude.
|
||||
MatMulConstBOnly = True/False:
|
||||
Default is True for dynamic mode. If enabled, only MatMul with const B will be quantized.
|
||||
execution_provider : A enum indicates the Execution Provider such as: CPU, TRT, NNAPI, SNE, etc.
|
||||
|
||||
Raises:
|
||||
ValueError: Raise ValueError if execution provider is unknown
|
||||
"""
|
||||
super().__init__(
|
||||
op_types_to_quantize=op_types_to_quantize,
|
||||
per_channel=per_channel,
|
||||
reduce_range=reduce_range,
|
||||
weight_type=weight_type,
|
||||
nodes_to_quantize=nodes_to_quantize,
|
||||
nodes_to_exclude=nodes_to_exclude,
|
||||
use_external_data_format=use_external_data_format,
|
||||
)
|
||||
self.extra_options = extra_options or {}
|
||||
|
||||
|
||||
def check_static_quant_arguments(quant_format: QuantFormat, activation_type: QuantType, weight_type: QuantType):
|
||||
if activation_type == QuantType.QInt8 and weight_type == QuantType.QUInt8:
|
||||
raise ValueError(
|
||||
"ONNXRuntime quantization doesn't support data format:"
|
||||
"activation_type=QuantType.QInt8, weight_type=QuantType.QUInt8"
|
||||
)
|
||||
if activation_type != QuantType.QFLOAT8E4M3FN and weight_type == QuantType.QFLOAT8E4M3FN:
|
||||
raise ValueError(
|
||||
f"ONNXRuntime quantization doesn't support data format: activation_type={activation_type} "
|
||||
"!=QuantType.QFLOAT8E4M3FN, weight_type=QuantType.QFLOAT8E4M3FN."
|
||||
)
|
||||
|
||||
if activation_type == QuantType.QFLOAT8E4M3FN and weight_type != QuantType.QFLOAT8E4M3FN:
|
||||
raise ValueError(
|
||||
"ONNXRuntime quantization doesn't support data format: activation_type=QuantType.QFLOAT8E4M3FN, "
|
||||
f"weight_type={weight_type}!=QuantType.QFLOAT8E4M3FN"
|
||||
)
|
||||
|
||||
q16_types = [QuantType.QInt16, QuantType.QUInt16]
|
||||
|
||||
if (activation_type in q16_types or weight_type in q16_types) and quant_format != QuantFormat.QDQ:
|
||||
raise ValueError("Only QuantFormat.QDQ supports 16-bit quantization types.")
|
||||
|
||||
if activation_type == QuantType.QInt8 and weight_type == QuantType.QInt8 and quant_format != QuantFormat.QDQ:
|
||||
logging.warning(
|
||||
"Please use QuantFormat.QDQ for activation type QInt8 and weight type QInt8. "
|
||||
"Or it will lead to bad performance on x64."
|
||||
)
|
||||
|
||||
|
||||
def quantize_static(
|
||||
model_input: str | Path | onnx.ModelProto,
|
||||
model_output: str | Path,
|
||||
calibration_data_reader: CalibrationDataReader,
|
||||
quant_format=QuantFormat.QDQ,
|
||||
op_types_to_quantize=None,
|
||||
per_channel=False,
|
||||
reduce_range=False,
|
||||
activation_type=QuantType.QInt8,
|
||||
weight_type=QuantType.QInt8,
|
||||
nodes_to_quantize=None,
|
||||
nodes_to_exclude=None,
|
||||
use_external_data_format=False,
|
||||
calibrate_method=CalibrationMethod.MinMax,
|
||||
calibration_providers=None,
|
||||
extra_options=None,
|
||||
):
|
||||
"""
|
||||
Given an onnx model and calibration data reader, create a quantized onnx model and save it into a file
|
||||
It is recommended to use QuantFormat.QDQ format from 1.11 with activation_type = QuantType.QInt8 and weight_type
|
||||
= QuantType.QInt8. If model is targeted to GPU/TRT, symmetric activation and weight are required. If model is
|
||||
targeted to CPU, asymmetric activation and symmetric weight are recommended for balance of performance and
|
||||
accuracy.
|
||||
|
||||
Args:
|
||||
|
||||
model_input: file path of model or ModelProto to quantize
|
||||
model_output: file path of quantized model
|
||||
calibration_data_reader: a calibration data reader. It
|
||||
enumerates calibration data and generates inputs for the
|
||||
original model.
|
||||
quant_format: QuantFormat{QOperator, QDQ}.
|
||||
QOperator format quantizes the model with quantized operators directly.
|
||||
QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor.
|
||||
activation_type:
|
||||
quantization data type of activation. Please refer to
|
||||
https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
|
||||
calibrate_method:
|
||||
Current calibration methods supported are MinMax and Entropy.
|
||||
Please use CalibrationMethod.MinMax or CalibrationMethod.Entropy as options.
|
||||
op_types_to_quantize:
|
||||
specify the types of operators to quantize, like ['Conv'] to quantize Conv only.
|
||||
It quantizes all supported operators by default.
|
||||
per_channel: quantize weights per channel
|
||||
reduce_range:
|
||||
quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine,
|
||||
especially for per-channel mode
|
||||
weight_type:
|
||||
quantization data type of weight. Please refer to
|
||||
https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
|
||||
nodes_to_quantize:
|
||||
List of nodes names to quantize. When this list is not None only the nodes in this list
|
||||
are quantized.
|
||||
example:
|
||||
[
|
||||
'Conv__224',
|
||||
'Conv__252'
|
||||
]
|
||||
nodes_to_exclude:
|
||||
List of nodes names to exclude. The nodes in this list will be excluded from quantization
|
||||
when it is not None.
|
||||
use_external_data_format: option used for large size (>2GB) model. Set to False by default.
|
||||
calibration_providers: Execution providers to run the session during calibration. Default is None which uses
|
||||
[ "CPUExecutionProvider" ]
|
||||
extra_options:
|
||||
key value pair dictionary for various options in different case. Current used:
|
||||
extra.Sigmoid.nnapi = True/False (Default is False)
|
||||
ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False).
|
||||
WeightSymmetric = True/False: symmetrize calibration data for weights (default is True).
|
||||
EnableSubgraph = True/False : Default is False. If enabled, subgraph will be quantized.
|
||||
Dyanmic mode currently is supported. Will support more in the future.
|
||||
ForceQuantizeNoInputCheck = True/False :
|
||||
By default, some latent operators like maxpool, transpose, do not quantize if their input is not
|
||||
quantized already. Setting to True to force such operator always quantize input and so generate
|
||||
quantized output. Also, the True behavior could be disabled per node using the nodes_to_exclude.
|
||||
MatMulConstBOnly = True/False:
|
||||
Default is False for static mode. If enabled, only MatMul with const B will be quantized.
|
||||
AddQDQPairToWeight = True/False :
|
||||
Default is False which quantizes floating-point weight and feeds it to solely inserted
|
||||
DeQuantizeLinear node. If True, it remains floating-point weight and inserts both
|
||||
QuantizeLinear/DeQuantizeLinear nodes to weight.
|
||||
OpTypesToExcludeOutputQuantization = list of op type :
|
||||
Default is []. If any op type is specified, it won't quantize the output of ops with this
|
||||
specific op types.
|
||||
DedicatedQDQPair = True/False :
|
||||
Default is False. When inserting QDQ pair, multiple nodes can share a single QDQ pair as their
|
||||
inputs. If True, it will create identical and dedicated QDQ pair for each node.
|
||||
QDQOpTypePerChannelSupportToAxis = dictionary :
|
||||
Default is {}. Set channel axis for specific op type, for example: {'MatMul': 1}, and it's
|
||||
effective only when per channel quantization is supported and per_channel is True. If specific
|
||||
op type supports per channel quantization but not explicitly specified with channel axis,
|
||||
default channel axis will be used.
|
||||
CalibTensorRangeSymmetric = True/False :
|
||||
Default is False. If enabled, the final range of tensor during calibration will be explicitly
|
||||
set to symmetric to central point "0".
|
||||
CalibStridedMinMax = Optional[int] :
|
||||
Default is None. If set to an integer, during calculation of the min-max, only stride amount of
|
||||
data will be used and then all results will be merged in the end.
|
||||
CalibMovingAverage = True/False :
|
||||
Default is False. If enabled, the moving average of the minimum and maximum values will be
|
||||
computed when the calibration method selected is MinMax.
|
||||
CalibMovingAverageConstant = float :
|
||||
Default is 0.01. Constant smoothing factor to use when computing the moving average of the
|
||||
minimum and maximum values. Effective only when the calibration method selected is MinMax and
|
||||
when CalibMovingAverage is set to True.
|
||||
CalibMaxIntermediateOutputs = Optional[int] :
|
||||
Default is None. If set to an integer, during calculation of the min-max range of the tensors
|
||||
it will load at max value number of outputs before computing and merging the range. This will
|
||||
produce the same result as all computing with None, but is more memory efficient.
|
||||
SmoothQuant = True/False :
|
||||
Default is False. If enabled, SmoothQuant algorithm will be applied before quantization to do
|
||||
fake input channel quantization.
|
||||
SmoothQuantAlpha = float :
|
||||
Default is 0.5. It only works if SmoothQuant is True. It controls the difficulty of weight
|
||||
and activation quantization. A larger alpha value could be used on models with more significant
|
||||
activation outliers to migrate more quantization difficulty to weights.
|
||||
SmoothQuantFolding = True/False :
|
||||
Default is True. It only works if SmoothQuant is True. If enabled, inserted Mul ops during
|
||||
SmoothQuant will be folded into the previous op if the previous op is foldable.
|
||||
UseQDQContribOps = True/False :
|
||||
Default is False. If enabled, the inserted QuantizeLinear and DequantizeLinear ops will have the
|
||||
`com.microsoft` domain, which forces use of ONNX Runtime's QuantizeLinear and DequantizeLinear
|
||||
contrib op implementations. The contrib op implementations may support features not standardized
|
||||
into the ONNX specification (e.g., 16-bit quantization types).
|
||||
MinimumRealRange = float|None :
|
||||
Default is None. If set to a floating-point value, the calculation of the quantization parameters
|
||||
(i.e., scale and zero point) will enforce a minimum range between rmin and rmax. If (rmax - rmin)
|
||||
is less than the specified minimum range, rmax will be set to rmin + MinimumRealRange. This is
|
||||
necessary for EPs like QNN that require a minimum floating-point range when determining
|
||||
quantization parameters.
|
||||
TensorQuantOverrides = dictionary :
|
||||
Default is {}. Set tensor quantization overrides. The key is a tensor name and the value is a
|
||||
list of dictionaries. For per-tensor quantization, the list contains a single dictionary. For
|
||||
per-channel quantization, the list contains a dictionary for each channel in the tensor.
|
||||
Each dictionary contains optional overrides with the following keys and values.
|
||||
'quant_type' = QuantType : The tensor's quantization data type.
|
||||
'scale' = Float : The scale value to use. Must also specify `zero_point` if set.
|
||||
'zero_point' = Int : The zero-point value to use. Must also specify `scale` is set.
|
||||
'symmetric' = Bool : If the tensor should use symmetric quantization. Invalid if also
|
||||
set `scale` or `zero_point`.
|
||||
'reduce_range' = Bool : If the quantization range should be reduced. Invalid if also
|
||||
set `scale` or `zero_point`.
|
||||
'rmax' = Float : Override the maximum real tensor value in calibration data.
|
||||
Invalid if also set `scale` or `zero_point`.
|
||||
'rmin' = Float : Override the minimum real tensor value in calibration data.
|
||||
Invalid if also set `scale` or `zero_point`.
|
||||
QDQKeepRemovableActivations = True/False:
|
||||
Default is False. If true, "removable" activations (e.g., Clip or Relu) will not be removed, and
|
||||
will be explicitly represented in the QDQ model. If false, these activations are automatically
|
||||
removed if activations are asymmetrically quantized. Keeping these activations is necessary if
|
||||
optimizations or EP transformations will later remove QuantizeLinear/DequantizeLinear
|
||||
operators from the model.
|
||||
QDQDisableWeightAdjustForInt32Bias = True/False:
|
||||
Default is False. If true, QDQ quantizer will not adjust the weight's scale when the bias
|
||||
has a scale (input_scale * weight_scale) that is too small.
|
||||
"""
|
||||
if activation_type == QuantType.QFLOAT8E4M3FN or weight_type == QuantType.QFLOAT8E4M3FN:
|
||||
if calibrate_method != CalibrationMethod.Distribution:
|
||||
raise ValueError("Only Distribution calibration method is supported for float quantization.")
|
||||
|
||||
extra_options = extra_options or {}
|
||||
nodes_to_exclude = nodes_to_exclude or []
|
||||
nodes_to_quantize = nodes_to_quantize or []
|
||||
op_types_to_quantize = op_types_to_quantize or []
|
||||
mode = QuantizationMode.QLinearOps
|
||||
|
||||
if not op_types_to_quantize or len(op_types_to_quantize) == 0:
|
||||
q_linear_ops = list(QLinearOpsRegistry.keys())
|
||||
qdq_ops = list(QDQRegistry.keys())
|
||||
op_types_to_quantize = list(set(q_linear_ops + qdq_ops))
|
||||
|
||||
model = (
|
||||
save_and_reload_model_with_shape_infer(model_input)
|
||||
if isinstance(model_input, onnx.ModelProto)
|
||||
else load_model_with_shape_infer(Path(model_input))
|
||||
)
|
||||
|
||||
pre_processed: bool = model_has_pre_process_metadata(model)
|
||||
if not pre_processed:
|
||||
logging.warning(
|
||||
"Please consider to run pre-processing before quantization. Refer to example: "
|
||||
"https://github.com/microsoft/onnxruntime-inference-examples/blob/main/quantization/image_classification"
|
||||
"/cpu/ReadMe.md "
|
||||
)
|
||||
|
||||
calib_extra_options_keys = [
|
||||
("CalibTensorRangeSymmetric", "symmetric"),
|
||||
("CalibMovingAverage", "moving_average"),
|
||||
("CalibMovingAverageConstant", "averaging_constant"),
|
||||
("CalibMaxIntermediateOutputs", "max_intermediate_outputs"),
|
||||
("CalibPercentile", "percentile"),
|
||||
]
|
||||
calib_extra_options = {
|
||||
key: extra_options.get(name) for (name, key) in calib_extra_options_keys if name in extra_options
|
||||
}
|
||||
|
||||
if extra_options.get("SmoothQuant", False):
|
||||
import importlib # noqa: PLC0415
|
||||
|
||||
try:
|
||||
importlib.import_module("neural_compressor.adaptor.ox_utils.smooth_quant")
|
||||
except Exception as e:
|
||||
logging.error(f"{e}.")
|
||||
raise RuntimeError("neural-compressor is not correctly installed. Please check your environment.") from e
|
||||
|
||||
from neural_compressor.adaptor.ox_utils.smooth_quant import ORTSmoothQuant # noqa: PLC0415
|
||||
|
||||
def inc_dataloader():
|
||||
data_reader = copy.deepcopy(calibration_data_reader)
|
||||
for data in data_reader:
|
||||
yield data, None
|
||||
|
||||
orig_nodes = [i.name for i in model.graph.node]
|
||||
dataloader = inc_dataloader()
|
||||
sq = ORTSmoothQuant(model_input, dataloader, reduce_range)
|
||||
del dataloader
|
||||
model = sq.transform(extra_options.get("SmoothQuantAlpha", 0.5), extra_options.get("SmoothQuantFolding", True))
|
||||
sq_path = tempfile.TemporaryDirectory(prefix="ort.quant.")
|
||||
model_input = Path(sq_path.name).joinpath("sq_model.onnx").as_posix()
|
||||
model.save(model_input)
|
||||
nodes_to_exclude.extend([i.name for i in model.model.graph.node if i.name not in orig_nodes])
|
||||
model = load_model_with_shape_infer(Path(model_input)) # use smooth quant model for calibration
|
||||
|
||||
updated_model = update_opset_version(model, weight_type)
|
||||
is_model_updated = updated_model is not model
|
||||
if is_model_updated:
|
||||
model = updated_model
|
||||
|
||||
with tempfile.TemporaryDirectory(prefix="ort.quant.") as quant_tmp_dir:
|
||||
if is_model_updated:
|
||||
# Update model_input and avoid to use the original one
|
||||
model_input = copy.deepcopy(model)
|
||||
|
||||
if isinstance(model_input, onnx.ModelProto):
|
||||
output_path = Path(quant_tmp_dir).joinpath("model_input.onnx").as_posix()
|
||||
onnx.save_model(
|
||||
model_input,
|
||||
output_path,
|
||||
save_as_external_data=True,
|
||||
)
|
||||
model_input = output_path
|
||||
|
||||
calibrator = create_calibrator(
|
||||
Path(model_input),
|
||||
op_types_to_quantize,
|
||||
augmented_model_path=Path(quant_tmp_dir).joinpath("augmented_model.onnx").as_posix(),
|
||||
calibrate_method=calibrate_method,
|
||||
use_external_data_format=use_external_data_format,
|
||||
providers=calibration_providers,
|
||||
extra_options=calib_extra_options,
|
||||
)
|
||||
|
||||
stride = extra_options.get("CalibStridedMinMax", None)
|
||||
if stride:
|
||||
total_data_size = len(calibration_data_reader)
|
||||
if total_data_size % stride != 0:
|
||||
raise ValueError(f"Total data size ({total_data_size}) is not divisible by stride size ({stride}).")
|
||||
|
||||
for start in range(0, total_data_size, stride):
|
||||
end_index = start + stride
|
||||
calibration_data_reader.set_range(start_index=start, end_index=end_index)
|
||||
calibrator.collect_data(calibration_data_reader)
|
||||
else:
|
||||
calibrator.collect_data(calibration_data_reader)
|
||||
tensors_range = calibrator.compute_data()
|
||||
if not isinstance(tensors_range, TensorsData):
|
||||
raise TypeError(
|
||||
f"Unexpected type {type(tensors_range)} for tensors_range and calibrator={type(calibrator)}."
|
||||
)
|
||||
del calibrator
|
||||
|
||||
check_static_quant_arguments(quant_format, activation_type, weight_type)
|
||||
|
||||
if quant_format is QuantFormat.QOperator:
|
||||
quantizer = ONNXQuantizer(
|
||||
model,
|
||||
per_channel,
|
||||
reduce_range,
|
||||
mode,
|
||||
True, # static
|
||||
weight_type,
|
||||
activation_type,
|
||||
tensors_range,
|
||||
nodes_to_quantize,
|
||||
nodes_to_exclude,
|
||||
op_types_to_quantize,
|
||||
extra_options,
|
||||
)
|
||||
else:
|
||||
quantizer = QDQQuantizer(
|
||||
model,
|
||||
per_channel,
|
||||
reduce_range,
|
||||
weight_type,
|
||||
activation_type,
|
||||
tensors_range,
|
||||
nodes_to_quantize,
|
||||
nodes_to_exclude,
|
||||
op_types_to_quantize,
|
||||
extra_options,
|
||||
)
|
||||
|
||||
quantizer.quantize_model()
|
||||
quantizer.model.save_model_to_file(model_output, use_external_data_format)
|
||||
if not pre_processed:
|
||||
logging.warning(
|
||||
"Please consider pre-processing before quantization. See "
|
||||
"https://github.com/microsoft/onnxruntime-inference-examples/blob/main/quantization/image_classification"
|
||||
"/cpu/ReadMe.md "
|
||||
)
|
||||
|
||||
if extra_options.get("SmoothQuant", False):
|
||||
sq_path.cleanup()
|
||||
|
||||
|
||||
def quantize_dynamic(
|
||||
model_input: str | Path | onnx.ModelProto,
|
||||
model_output: str | Path,
|
||||
op_types_to_quantize=None,
|
||||
per_channel=False,
|
||||
reduce_range=False,
|
||||
weight_type=QuantType.QInt8,
|
||||
nodes_to_quantize=None,
|
||||
nodes_to_exclude=None,
|
||||
use_external_data_format=False,
|
||||
extra_options=None,
|
||||
):
|
||||
"""Given an onnx model, create a quantized onnx model and save it into a file
|
||||
|
||||
Args:
|
||||
model_input: file path of model or ModelProto to quantize
|
||||
model_output: file path of quantized model
|
||||
op_types_to_quantize:
|
||||
specify the types of operators to quantize, like ['Conv'] to quantize Conv only.
|
||||
It quantizes all supported operators by default.
|
||||
per_channel: quantize weights per channel
|
||||
reduce_range:
|
||||
quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine,
|
||||
especially for per-channel mode
|
||||
weight_type:
|
||||
quantization data type of weight. Please refer to
|
||||
https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
|
||||
nodes_to_quantize:
|
||||
List of nodes names to quantize. When this list is not None only the nodes in this list
|
||||
are quantized.
|
||||
example:
|
||||
[
|
||||
'Conv__224',
|
||||
'Conv__252'
|
||||
]
|
||||
nodes_to_exclude:
|
||||
List of nodes names to exclude. The nodes in this list will be excluded from quantization
|
||||
when it is not None.
|
||||
use_external_data_format: option used for large size (>2GB) model. Set to False by default.
|
||||
extra_options:
|
||||
key value pair dictionary for various options in different case. Current used:
|
||||
extra.Sigmoid.nnapi = True/False (Default is False)
|
||||
ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False).
|
||||
WeightSymmetric = True/False: symmetrize calibration data for weights (default is True).
|
||||
EnableSubgraph = True/False :
|
||||
Default is False. If enabled, subgraph will be quantized. Dynamic mode currently is supported. Will
|
||||
support more in the future.
|
||||
ForceQuantizeNoInputCheck = True/False :
|
||||
By default, some latent operators like maxpool, transpose, do not quantize if their input is not
|
||||
quantized already. Setting to True to force such operator always quantize input and so generate
|
||||
quantized output. Also the True behavior could be disabled per node using the nodes_to_exclude.
|
||||
MatMulConstBOnly = True/False:
|
||||
Default is True for dynamic mode. If enabled, only MatMul with const B will be quantized.
|
||||
"""
|
||||
extra_options = extra_options or {}
|
||||
nodes_to_exclude = nodes_to_exclude or []
|
||||
nodes_to_quantize = nodes_to_quantize or []
|
||||
op_types_to_quantize = op_types_to_quantize or []
|
||||
|
||||
mode = QuantizationMode.IntegerOps
|
||||
|
||||
if not op_types_to_quantize or len(op_types_to_quantize) == 0:
|
||||
op_types_to_quantize = list(IntegerOpsRegistry.keys())
|
||||
|
||||
model = (
|
||||
save_and_reload_model_with_shape_infer(model_input)
|
||||
if isinstance(model_input, onnx.ModelProto)
|
||||
else load_model_with_shape_infer(Path(model_input))
|
||||
)
|
||||
|
||||
pre_processed: bool = model_has_pre_process_metadata(model)
|
||||
if not pre_processed:
|
||||
logging.warning(
|
||||
"Please consider to run pre-processing before quantization. Refer to example: "
|
||||
"https://github.com/microsoft/onnxruntime-inference-examples/blob/main/quantization/image_classification"
|
||||
"/cpu/ReadMe.md "
|
||||
)
|
||||
|
||||
if "MatMulConstBOnly" not in extra_options:
|
||||
extra_options["MatMulConstBOnly"] = True
|
||||
|
||||
model = update_opset_version(model, weight_type)
|
||||
|
||||
quantizer = ONNXQuantizer(
|
||||
model,
|
||||
per_channel,
|
||||
reduce_range,
|
||||
mode,
|
||||
False, # static
|
||||
weight_type,
|
||||
QuantType.QUInt8, # dynamic activation only supports uint8
|
||||
None,
|
||||
nodes_to_quantize,
|
||||
nodes_to_exclude,
|
||||
op_types_to_quantize,
|
||||
extra_options,
|
||||
)
|
||||
|
||||
quantizer.quantize_model()
|
||||
quantizer.model.save_model_to_file(model_output, use_external_data_format)
|
||||
|
||||
|
||||
def quantize(
|
||||
model_input: str | Path | onnx.ModelProto,
|
||||
model_output: str | Path,
|
||||
quant_config: QuantConfig,
|
||||
):
|
||||
"""Quantize a model with QuantConfig.
|
||||
|
||||
Args:
|
||||
model_input (str | Path | ModelProto): Path to the model or ModelProto to quantize.
|
||||
model_output (str | Path): Path to save the quantized model.
|
||||
quant_config (QuantConfig | WeightOnlyQuantConfig): Quantization Configuration.
|
||||
"""
|
||||
if isinstance(quant_config, StaticQuantConfig):
|
||||
quantize_static(
|
||||
model_input,
|
||||
model_output,
|
||||
quant_config.calibration_data_reader,
|
||||
calibrate_method=quant_config.calibrate_method,
|
||||
quant_format=quant_config.quant_format,
|
||||
activation_type=quant_config.activation_type,
|
||||
weight_type=quant_config.weight_type,
|
||||
op_types_to_quantize=quant_config.op_types_to_quantize,
|
||||
nodes_to_quantize=quant_config.nodes_to_quantize,
|
||||
nodes_to_exclude=quant_config.nodes_to_exclude,
|
||||
per_channel=quant_config.per_channel,
|
||||
reduce_range=quant_config.reduce_range,
|
||||
use_external_data_format=quant_config.use_external_data_format,
|
||||
calibration_providers=quant_config.calibration_providers,
|
||||
extra_options=quant_config.extra_options,
|
||||
)
|
||||
|
||||
elif isinstance(quant_config, DynamicQuantConfig):
|
||||
quantize_dynamic(
|
||||
model_input,
|
||||
model_output,
|
||||
weight_type=quant_config.weight_type,
|
||||
op_types_to_quantize=quant_config.op_types_to_quantize,
|
||||
nodes_to_quantize=quant_config.nodes_to_quantize,
|
||||
nodes_to_exclude=quant_config.nodes_to_exclude,
|
||||
per_channel=quant_config.per_channel,
|
||||
reduce_range=quant_config.reduce_range,
|
||||
use_external_data_format=quant_config.use_external_data_format,
|
||||
extra_options=quant_config.extra_options,
|
||||
)
|
||||
else:
|
||||
# training package doesn't has quantize_matmul_4bits, avoid global import
|
||||
from .matmul_nbits_quantizer import MatMulNBitsQuantizer, WeightOnlyQuantConfig # noqa: PLC0415
|
||||
|
||||
if isinstance(quant_config, WeightOnlyQuantConfig):
|
||||
model = model_input if isinstance(model_input, onnx.ModelProto) else onnx.load(model_input)
|
||||
quant = MatMulNBitsQuantizer(model, algo_config=quant_config)
|
||||
quant.process()
|
||||
quant.model.save_model_to_file(model_output, True)
|
||||
else:
|
||||
raise TypeError(
|
||||
"Invalid quantization config type, it must be either StaticQuantConfig, "
|
||||
"DynamicQuantConfig, or WeightOnlyQuantConfig."
|
||||
)
|
||||
Reference in New Issue
Block a user