chore: 添加虚拟环境到仓库
- 添加 backend_service/venv 虚拟环境 - 包含所有Python依赖包 - 注意:虚拟环境约393MB,包含12655个文件
This commit is contained in:
@@ -0,0 +1,77 @@
|
||||
from .libmpf import (prec_to_dps, dps_to_prec, repr_dps,
|
||||
round_down, round_up, round_floor, round_ceiling, round_nearest,
|
||||
to_pickable, from_pickable, ComplexResult,
|
||||
fzero, fnzero, fone, fnone, ftwo, ften, fhalf, fnan, finf, fninf,
|
||||
math_float_inf, round_int, normalize, normalize1,
|
||||
from_man_exp, from_int, to_man_exp, to_int, mpf_ceil, mpf_floor,
|
||||
mpf_nint, mpf_frac,
|
||||
from_float, from_npfloat, from_Decimal, to_float, from_rational, to_rational, to_fixed,
|
||||
mpf_rand, mpf_eq, mpf_hash, mpf_cmp, mpf_lt, mpf_le, mpf_gt, mpf_ge,
|
||||
mpf_pos, mpf_neg, mpf_abs, mpf_sign, mpf_add, mpf_sub, mpf_sum,
|
||||
mpf_mul, mpf_mul_int, mpf_shift, mpf_frexp,
|
||||
mpf_div, mpf_rdiv_int, mpf_mod, mpf_pow_int,
|
||||
mpf_perturb,
|
||||
to_digits_exp, to_str, str_to_man_exp, from_str, from_bstr, to_bstr,
|
||||
mpf_sqrt, mpf_hypot)
|
||||
|
||||
from .libmpc import (mpc_one, mpc_zero, mpc_two, mpc_half,
|
||||
mpc_is_inf, mpc_is_infnan, mpc_to_str, mpc_to_complex, mpc_hash,
|
||||
mpc_conjugate, mpc_is_nonzero, mpc_add, mpc_add_mpf,
|
||||
mpc_sub, mpc_sub_mpf, mpc_pos, mpc_neg, mpc_shift, mpc_abs,
|
||||
mpc_arg, mpc_floor, mpc_ceil, mpc_nint, mpc_frac, mpc_mul, mpc_square,
|
||||
mpc_mul_mpf, mpc_mul_imag_mpf, mpc_mul_int,
|
||||
mpc_div, mpc_div_mpf, mpc_reciprocal, mpc_mpf_div,
|
||||
complex_int_pow, mpc_pow, mpc_pow_mpf, mpc_pow_int,
|
||||
mpc_sqrt, mpc_nthroot, mpc_cbrt, mpc_exp, mpc_log, mpc_cos, mpc_sin,
|
||||
mpc_tan, mpc_cos_pi, mpc_sin_pi, mpc_cosh, mpc_sinh, mpc_tanh,
|
||||
mpc_atan, mpc_acos, mpc_asin, mpc_asinh, mpc_acosh, mpc_atanh,
|
||||
mpc_fibonacci, mpf_expj, mpf_expjpi, mpc_expj, mpc_expjpi,
|
||||
mpc_cos_sin, mpc_cos_sin_pi)
|
||||
|
||||
from .libelefun import (ln2_fixed, mpf_ln2, ln10_fixed, mpf_ln10,
|
||||
pi_fixed, mpf_pi, e_fixed, mpf_e, phi_fixed, mpf_phi,
|
||||
degree_fixed, mpf_degree,
|
||||
mpf_pow, mpf_nthroot, mpf_cbrt, log_int_fixed, agm_fixed,
|
||||
mpf_log, mpf_log_hypot, mpf_exp, mpf_cos_sin, mpf_cos, mpf_sin, mpf_tan,
|
||||
mpf_cos_sin_pi, mpf_cos_pi, mpf_sin_pi, mpf_cosh_sinh,
|
||||
mpf_cosh, mpf_sinh, mpf_tanh, mpf_atan, mpf_atan2, mpf_asin,
|
||||
mpf_acos, mpf_asinh, mpf_acosh, mpf_atanh, mpf_fibonacci)
|
||||
|
||||
from .libhyper import (NoConvergence, make_hyp_summator,
|
||||
mpf_erf, mpf_erfc, mpf_ei, mpc_ei, mpf_e1, mpc_e1, mpf_expint,
|
||||
mpf_ci_si, mpf_ci, mpf_si, mpc_ci, mpc_si, mpf_besseljn,
|
||||
mpc_besseljn, mpf_agm, mpf_agm1, mpc_agm, mpc_agm1,
|
||||
mpf_ellipk, mpc_ellipk, mpf_ellipe, mpc_ellipe)
|
||||
|
||||
from .gammazeta import (catalan_fixed, mpf_catalan,
|
||||
khinchin_fixed, mpf_khinchin, glaisher_fixed, mpf_glaisher,
|
||||
apery_fixed, mpf_apery, euler_fixed, mpf_euler, mertens_fixed,
|
||||
mpf_mertens, twinprime_fixed, mpf_twinprime,
|
||||
mpf_bernoulli, bernfrac, mpf_gamma_int,
|
||||
mpf_factorial, mpc_factorial, mpf_gamma, mpc_gamma,
|
||||
mpf_loggamma, mpc_loggamma, mpf_rgamma, mpc_rgamma,
|
||||
mpf_harmonic, mpc_harmonic, mpf_psi0, mpc_psi0,
|
||||
mpf_psi, mpc_psi, mpf_zeta_int, mpf_zeta, mpc_zeta,
|
||||
mpf_altzeta, mpc_altzeta, mpf_zetasum, mpc_zetasum)
|
||||
|
||||
from .libmpi import (mpi_str,
|
||||
mpi_from_str, mpi_to_str,
|
||||
mpi_eq, mpi_ne,
|
||||
mpi_lt, mpi_le, mpi_gt, mpi_ge,
|
||||
mpi_add, mpi_sub, mpi_delta, mpi_mid,
|
||||
mpi_pos, mpi_neg, mpi_abs, mpi_mul, mpi_div, mpi_exp,
|
||||
mpi_log, mpi_sqrt, mpi_pow_int, mpi_pow, mpi_cos_sin,
|
||||
mpi_cos, mpi_sin, mpi_tan, mpi_cot,
|
||||
mpi_atan, mpi_atan2,
|
||||
mpci_pos, mpci_neg, mpci_add, mpci_sub, mpci_mul, mpci_div, mpci_pow,
|
||||
mpci_abs, mpci_pow, mpci_exp, mpci_log, mpci_cos, mpci_sin,
|
||||
mpi_gamma, mpci_gamma, mpi_loggamma, mpci_loggamma,
|
||||
mpi_rgamma, mpci_rgamma, mpi_factorial, mpci_factorial)
|
||||
|
||||
from .libintmath import (trailing, bitcount, numeral, bin_to_radix,
|
||||
isqrt, isqrt_small, isqrt_fast, sqrt_fixed, sqrtrem, ifib, ifac,
|
||||
list_primes, isprime, moebius, gcd, eulernum, stirling1, stirling2)
|
||||
|
||||
from .backend import (gmpy, sage, BACKEND, STRICT, MPZ, MPZ_TYPE,
|
||||
MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_THREE, MPZ_FIVE, int_types,
|
||||
HASH_MODULUS, HASH_BITS)
|
||||
@@ -0,0 +1,115 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
#----------------------------------------------------------------------------#
|
||||
# Support GMPY for high-speed large integer arithmetic. #
|
||||
# #
|
||||
# To allow an external module to handle arithmetic, we need to make sure #
|
||||
# that all high-precision variables are declared of the correct type. MPZ #
|
||||
# is the constructor for the high-precision type. It defaults to Python's #
|
||||
# long type but can be assinged another type, typically gmpy.mpz. #
|
||||
# #
|
||||
# MPZ must be used for the mantissa component of an mpf and must be used #
|
||||
# for internal fixed-point operations. #
|
||||
# #
|
||||
# Side-effects #
|
||||
# 1) "is" cannot be used to test for special values. Must use "==". #
|
||||
# 2) There are bugs in GMPY prior to v1.02 so we must use v1.03 or later. #
|
||||
#----------------------------------------------------------------------------#
|
||||
|
||||
# So we can import it from this module
|
||||
gmpy = None
|
||||
sage = None
|
||||
sage_utils = None
|
||||
|
||||
if sys.version_info[0] < 3:
|
||||
python3 = False
|
||||
else:
|
||||
python3 = True
|
||||
|
||||
BACKEND = 'python'
|
||||
|
||||
if not python3:
|
||||
MPZ = long
|
||||
xrange = xrange
|
||||
basestring = basestring
|
||||
|
||||
def exec_(_code_, _globs_=None, _locs_=None):
|
||||
"""Execute code in a namespace."""
|
||||
if _globs_ is None:
|
||||
frame = sys._getframe(1)
|
||||
_globs_ = frame.f_globals
|
||||
if _locs_ is None:
|
||||
_locs_ = frame.f_locals
|
||||
del frame
|
||||
elif _locs_ is None:
|
||||
_locs_ = _globs_
|
||||
exec("""exec _code_ in _globs_, _locs_""")
|
||||
else:
|
||||
MPZ = int
|
||||
xrange = range
|
||||
basestring = str
|
||||
|
||||
import builtins
|
||||
exec_ = getattr(builtins, "exec")
|
||||
|
||||
# Define constants for calculating hash on Python 3.2.
|
||||
if sys.version_info >= (3, 2):
|
||||
HASH_MODULUS = sys.hash_info.modulus
|
||||
if sys.hash_info.width == 32:
|
||||
HASH_BITS = 31
|
||||
else:
|
||||
HASH_BITS = 61
|
||||
else:
|
||||
HASH_MODULUS = None
|
||||
HASH_BITS = None
|
||||
|
||||
if 'MPMATH_NOGMPY' not in os.environ:
|
||||
try:
|
||||
try:
|
||||
import gmpy2 as gmpy
|
||||
except ImportError:
|
||||
try:
|
||||
import gmpy
|
||||
except ImportError:
|
||||
raise ImportError
|
||||
if gmpy.version() >= '1.03':
|
||||
BACKEND = 'gmpy'
|
||||
MPZ = gmpy.mpz
|
||||
except:
|
||||
pass
|
||||
|
||||
if ('MPMATH_NOSAGE' not in os.environ and 'SAGE_ROOT' in os.environ or
|
||||
'MPMATH_SAGE' in os.environ):
|
||||
try:
|
||||
import sage.all
|
||||
import sage.libs.mpmath.utils as _sage_utils
|
||||
sage = sage.all
|
||||
sage_utils = _sage_utils
|
||||
BACKEND = 'sage'
|
||||
MPZ = sage.Integer
|
||||
except:
|
||||
pass
|
||||
|
||||
if 'MPMATH_STRICT' in os.environ:
|
||||
STRICT = True
|
||||
else:
|
||||
STRICT = False
|
||||
|
||||
MPZ_TYPE = type(MPZ(0))
|
||||
MPZ_ZERO = MPZ(0)
|
||||
MPZ_ONE = MPZ(1)
|
||||
MPZ_TWO = MPZ(2)
|
||||
MPZ_THREE = MPZ(3)
|
||||
MPZ_FIVE = MPZ(5)
|
||||
|
||||
try:
|
||||
if BACKEND == 'python':
|
||||
int_types = (int, long)
|
||||
else:
|
||||
int_types = (int, long, MPZ_TYPE)
|
||||
except NameError:
|
||||
if BACKEND == 'python':
|
||||
int_types = (int,)
|
||||
else:
|
||||
int_types = (int, MPZ_TYPE)
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,584 @@
|
||||
"""
|
||||
Utility functions for integer math.
|
||||
|
||||
TODO: rename, cleanup, perhaps move the gmpy wrapper code
|
||||
here from settings.py
|
||||
|
||||
"""
|
||||
|
||||
import math
|
||||
from bisect import bisect
|
||||
|
||||
from .backend import xrange
|
||||
from .backend import BACKEND, gmpy, sage, sage_utils, MPZ, MPZ_ONE, MPZ_ZERO
|
||||
|
||||
small_trailing = [0] * 256
|
||||
for j in range(1,8):
|
||||
small_trailing[1<<j::1<<(j+1)] = [j] * (1<<(7-j))
|
||||
|
||||
def giant_steps(start, target, n=2):
|
||||
"""
|
||||
Return a list of integers ~=
|
||||
|
||||
[start, n*start, ..., target/n^2, target/n, target]
|
||||
|
||||
but conservatively rounded so that the quotient between two
|
||||
successive elements is actually slightly less than n.
|
||||
|
||||
With n = 2, this describes suitable precision steps for a
|
||||
quadratically convergent algorithm such as Newton's method;
|
||||
with n = 3 steps for cubic convergence (Halley's method), etc.
|
||||
|
||||
>>> giant_steps(50,1000)
|
||||
[66, 128, 253, 502, 1000]
|
||||
>>> giant_steps(50,1000,4)
|
||||
[65, 252, 1000]
|
||||
|
||||
"""
|
||||
L = [target]
|
||||
while L[-1] > start*n:
|
||||
L = L + [L[-1]//n + 2]
|
||||
return L[::-1]
|
||||
|
||||
def rshift(x, n):
|
||||
"""For an integer x, calculate x >> n with the fastest (floor)
|
||||
rounding. Unlike the plain Python expression (x >> n), n is
|
||||
allowed to be negative, in which case a left shift is performed."""
|
||||
if n >= 0: return x >> n
|
||||
else: return x << (-n)
|
||||
|
||||
def lshift(x, n):
|
||||
"""For an integer x, calculate x << n. Unlike the plain Python
|
||||
expression (x << n), n is allowed to be negative, in which case a
|
||||
right shift with default (floor) rounding is performed."""
|
||||
if n >= 0: return x << n
|
||||
else: return x >> (-n)
|
||||
|
||||
if BACKEND == 'sage':
|
||||
import operator
|
||||
rshift = operator.rshift
|
||||
lshift = operator.lshift
|
||||
|
||||
def python_trailing(n):
|
||||
"""Count the number of trailing zero bits in abs(n)."""
|
||||
if not n:
|
||||
return 0
|
||||
low_byte = n & 0xff
|
||||
if low_byte:
|
||||
return small_trailing[low_byte]
|
||||
t = 8
|
||||
n >>= 8
|
||||
while not n & 0xff:
|
||||
n >>= 8
|
||||
t += 8
|
||||
return t + small_trailing[n & 0xff]
|
||||
|
||||
if BACKEND == 'gmpy':
|
||||
if gmpy.version() >= '2':
|
||||
def gmpy_trailing(n):
|
||||
"""Count the number of trailing zero bits in abs(n) using gmpy."""
|
||||
if n: return MPZ(n).bit_scan1()
|
||||
else: return 0
|
||||
else:
|
||||
def gmpy_trailing(n):
|
||||
"""Count the number of trailing zero bits in abs(n) using gmpy."""
|
||||
if n: return MPZ(n).scan1()
|
||||
else: return 0
|
||||
|
||||
# Small powers of 2
|
||||
powers = [1<<_ for _ in range(300)]
|
||||
|
||||
def python_bitcount(n):
|
||||
"""Calculate bit size of the nonnegative integer n."""
|
||||
bc = bisect(powers, n)
|
||||
if bc != 300:
|
||||
return bc
|
||||
bc = int(math.log(n, 2)) - 4
|
||||
return bc + bctable[n>>bc]
|
||||
|
||||
def gmpy_bitcount(n):
|
||||
"""Calculate bit size of the nonnegative integer n."""
|
||||
if n: return MPZ(n).numdigits(2)
|
||||
else: return 0
|
||||
|
||||
#def sage_bitcount(n):
|
||||
# if n: return MPZ(n).nbits()
|
||||
# else: return 0
|
||||
|
||||
def sage_trailing(n):
|
||||
return MPZ(n).trailing_zero_bits()
|
||||
|
||||
if BACKEND == 'gmpy':
|
||||
bitcount = gmpy_bitcount
|
||||
trailing = gmpy_trailing
|
||||
elif BACKEND == 'sage':
|
||||
sage_bitcount = sage_utils.bitcount
|
||||
bitcount = sage_bitcount
|
||||
trailing = sage_trailing
|
||||
else:
|
||||
bitcount = python_bitcount
|
||||
trailing = python_trailing
|
||||
|
||||
if BACKEND == 'gmpy' and 'bit_length' in dir(gmpy):
|
||||
bitcount = gmpy.bit_length
|
||||
|
||||
# Used to avoid slow function calls as far as possible
|
||||
trailtable = [trailing(n) for n in range(256)]
|
||||
bctable = [bitcount(n) for n in range(1024)]
|
||||
|
||||
# TODO: speed up for bases 2, 4, 8, 16, ...
|
||||
|
||||
def bin_to_radix(x, xbits, base, bdigits):
|
||||
"""Changes radix of a fixed-point number; i.e., converts
|
||||
x * 2**xbits to floor(x * 10**bdigits)."""
|
||||
return x * (MPZ(base)**bdigits) >> xbits
|
||||
|
||||
stddigits = '0123456789abcdefghijklmnopqrstuvwxyz'
|
||||
|
||||
def small_numeral(n, base=10, digits=stddigits):
|
||||
"""Return the string numeral of a positive integer in an arbitrary
|
||||
base. Most efficient for small input."""
|
||||
if base == 10:
|
||||
return str(n)
|
||||
digs = []
|
||||
while n:
|
||||
n, digit = divmod(n, base)
|
||||
digs.append(digits[digit])
|
||||
return "".join(digs[::-1])
|
||||
|
||||
def numeral_python(n, base=10, size=0, digits=stddigits):
|
||||
"""Represent the integer n as a string of digits in the given base.
|
||||
Recursive division is used to make this function about 3x faster
|
||||
than Python's str() for converting integers to decimal strings.
|
||||
|
||||
The 'size' parameters specifies the number of digits in n; this
|
||||
number is only used to determine splitting points and need not be
|
||||
exact."""
|
||||
if n <= 0:
|
||||
if not n:
|
||||
return "0"
|
||||
return "-" + numeral(-n, base, size, digits)
|
||||
# Fast enough to do directly
|
||||
if size < 250:
|
||||
return small_numeral(n, base, digits)
|
||||
# Divide in half
|
||||
half = (size // 2) + (size & 1)
|
||||
A, B = divmod(n, base**half)
|
||||
ad = numeral(A, base, half, digits)
|
||||
bd = numeral(B, base, half, digits).rjust(half, "0")
|
||||
return ad + bd
|
||||
|
||||
def numeral_gmpy(n, base=10, size=0, digits=stddigits):
|
||||
"""Represent the integer n as a string of digits in the given base.
|
||||
Recursive division is used to make this function about 3x faster
|
||||
than Python's str() for converting integers to decimal strings.
|
||||
|
||||
The 'size' parameters specifies the number of digits in n; this
|
||||
number is only used to determine splitting points and need not be
|
||||
exact."""
|
||||
if n < 0:
|
||||
return "-" + numeral(-n, base, size, digits)
|
||||
# gmpy.digits() may cause a segmentation fault when trying to convert
|
||||
# extremely large values to a string. The size limit may need to be
|
||||
# adjusted on some platforms, but 1500000 works on Windows and Linux.
|
||||
if size < 1500000:
|
||||
return gmpy.digits(n, base)
|
||||
# Divide in half
|
||||
half = (size // 2) + (size & 1)
|
||||
A, B = divmod(n, MPZ(base)**half)
|
||||
ad = numeral(A, base, half, digits)
|
||||
bd = numeral(B, base, half, digits).rjust(half, "0")
|
||||
return ad + bd
|
||||
|
||||
if BACKEND == "gmpy":
|
||||
numeral = numeral_gmpy
|
||||
else:
|
||||
numeral = numeral_python
|
||||
|
||||
_1_800 = 1<<800
|
||||
_1_600 = 1<<600
|
||||
_1_400 = 1<<400
|
||||
_1_200 = 1<<200
|
||||
_1_100 = 1<<100
|
||||
_1_50 = 1<<50
|
||||
|
||||
def isqrt_small_python(x):
|
||||
"""
|
||||
Correctly (floor) rounded integer square root, using
|
||||
division. Fast up to ~200 digits.
|
||||
"""
|
||||
if not x:
|
||||
return x
|
||||
if x < _1_800:
|
||||
# Exact with IEEE double precision arithmetic
|
||||
if x < _1_50:
|
||||
return int(x**0.5)
|
||||
# Initial estimate can be any integer >= the true root; round up
|
||||
r = int(x**0.5 * 1.00000000000001) + 1
|
||||
else:
|
||||
bc = bitcount(x)
|
||||
n = bc//2
|
||||
r = int((x>>(2*n-100))**0.5+2)<<(n-50) # +2 is to round up
|
||||
# The following iteration now precisely computes floor(sqrt(x))
|
||||
# See e.g. Crandall & Pomerance, "Prime Numbers: A Computational
|
||||
# Perspective"
|
||||
while 1:
|
||||
y = (r+x//r)>>1
|
||||
if y >= r:
|
||||
return r
|
||||
r = y
|
||||
|
||||
def isqrt_fast_python(x):
|
||||
"""
|
||||
Fast approximate integer square root, computed using division-free
|
||||
Newton iteration for large x. For random integers the result is almost
|
||||
always correct (floor(sqrt(x))), but is 1 ulp too small with a roughly
|
||||
0.1% probability. If x is very close to an exact square, the answer is
|
||||
1 ulp wrong with high probability.
|
||||
|
||||
With 0 guard bits, the largest error over a set of 10^5 random
|
||||
inputs of size 1-10^5 bits was 3 ulp. The use of 10 guard bits
|
||||
almost certainly guarantees a max 1 ulp error.
|
||||
"""
|
||||
# Use direct division-based iteration if sqrt(x) < 2^400
|
||||
# Assume floating-point square root accurate to within 1 ulp, then:
|
||||
# 0 Newton iterations good to 52 bits
|
||||
# 1 Newton iterations good to 104 bits
|
||||
# 2 Newton iterations good to 208 bits
|
||||
# 3 Newton iterations good to 416 bits
|
||||
if x < _1_800:
|
||||
y = int(x**0.5)
|
||||
if x >= _1_100:
|
||||
y = (y + x//y) >> 1
|
||||
if x >= _1_200:
|
||||
y = (y + x//y) >> 1
|
||||
if x >= _1_400:
|
||||
y = (y + x//y) >> 1
|
||||
return y
|
||||
bc = bitcount(x)
|
||||
guard_bits = 10
|
||||
x <<= 2*guard_bits
|
||||
bc += 2*guard_bits
|
||||
bc += (bc&1)
|
||||
hbc = bc//2
|
||||
startprec = min(50, hbc)
|
||||
# Newton iteration for 1/sqrt(x), with floating-point starting value
|
||||
r = int(2.0**(2*startprec) * (x >> (bc-2*startprec)) ** -0.5)
|
||||
pp = startprec
|
||||
for p in giant_steps(startprec, hbc):
|
||||
# r**2, scaled from real size 2**(-bc) to 2**p
|
||||
r2 = (r*r) >> (2*pp - p)
|
||||
# x*r**2, scaled from real size ~1.0 to 2**p
|
||||
xr2 = ((x >> (bc-p)) * r2) >> p
|
||||
# New value of r, scaled from real size 2**(-bc/2) to 2**p
|
||||
r = (r * ((3<<p) - xr2)) >> (pp+1)
|
||||
pp = p
|
||||
# (1/sqrt(x))*x = sqrt(x)
|
||||
return (r*(x>>hbc)) >> (p+guard_bits)
|
||||
|
||||
def sqrtrem_python(x):
|
||||
"""Correctly rounded integer (floor) square root with remainder."""
|
||||
# to check cutoff:
|
||||
# plot(lambda x: timing(isqrt, 2**int(x)), [0,2000])
|
||||
if x < _1_600:
|
||||
y = isqrt_small_python(x)
|
||||
return y, x - y*y
|
||||
y = isqrt_fast_python(x) + 1
|
||||
rem = x - y*y
|
||||
# Correct remainder
|
||||
while rem < 0:
|
||||
y -= 1
|
||||
rem += (1+2*y)
|
||||
else:
|
||||
if rem:
|
||||
while rem > 2*(1+y):
|
||||
y += 1
|
||||
rem -= (1+2*y)
|
||||
return y, rem
|
||||
|
||||
def isqrt_python(x):
|
||||
"""Integer square root with correct (floor) rounding."""
|
||||
return sqrtrem_python(x)[0]
|
||||
|
||||
def sqrt_fixed(x, prec):
|
||||
return isqrt_fast(x<<prec)
|
||||
|
||||
sqrt_fixed2 = sqrt_fixed
|
||||
|
||||
if BACKEND == 'gmpy':
|
||||
if gmpy.version() >= '2':
|
||||
isqrt_small = isqrt_fast = isqrt = gmpy.isqrt
|
||||
sqrtrem = gmpy.isqrt_rem
|
||||
else:
|
||||
isqrt_small = isqrt_fast = isqrt = gmpy.sqrt
|
||||
sqrtrem = gmpy.sqrtrem
|
||||
elif BACKEND == 'sage':
|
||||
isqrt_small = isqrt_fast = isqrt = \
|
||||
getattr(sage_utils, "isqrt", lambda n: MPZ(n).isqrt())
|
||||
sqrtrem = lambda n: MPZ(n).sqrtrem()
|
||||
else:
|
||||
isqrt_small = isqrt_small_python
|
||||
isqrt_fast = isqrt_fast_python
|
||||
isqrt = isqrt_python
|
||||
sqrtrem = sqrtrem_python
|
||||
|
||||
|
||||
def ifib(n, _cache={}):
|
||||
"""Computes the nth Fibonacci number as an integer, for
|
||||
integer n."""
|
||||
if n < 0:
|
||||
return (-1)**(-n+1) * ifib(-n)
|
||||
if n in _cache:
|
||||
return _cache[n]
|
||||
m = n
|
||||
# Use Dijkstra's logarithmic algorithm
|
||||
# The following implementation is basically equivalent to
|
||||
# http://en.literateprograms.org/Fibonacci_numbers_(Scheme)
|
||||
a, b, p, q = MPZ_ONE, MPZ_ZERO, MPZ_ZERO, MPZ_ONE
|
||||
while n:
|
||||
if n & 1:
|
||||
aq = a*q
|
||||
a, b = b*q+aq+a*p, b*p+aq
|
||||
n -= 1
|
||||
else:
|
||||
qq = q*q
|
||||
p, q = p*p+qq, qq+2*p*q
|
||||
n >>= 1
|
||||
if m < 250:
|
||||
_cache[m] = b
|
||||
return b
|
||||
|
||||
MAX_FACTORIAL_CACHE = 1000
|
||||
|
||||
def ifac(n, memo={0:1, 1:1}):
|
||||
"""Return n factorial (for integers n >= 0 only)."""
|
||||
f = memo.get(n)
|
||||
if f:
|
||||
return f
|
||||
k = len(memo)
|
||||
p = memo[k-1]
|
||||
MAX = MAX_FACTORIAL_CACHE
|
||||
while k <= n:
|
||||
p *= k
|
||||
if k <= MAX:
|
||||
memo[k] = p
|
||||
k += 1
|
||||
return p
|
||||
|
||||
def ifac2(n, memo_pair=[{0:1}, {1:1}]):
|
||||
"""Return n!! (double factorial), integers n >= 0 only."""
|
||||
memo = memo_pair[n&1]
|
||||
f = memo.get(n)
|
||||
if f:
|
||||
return f
|
||||
k = max(memo)
|
||||
p = memo[k]
|
||||
MAX = MAX_FACTORIAL_CACHE
|
||||
while k < n:
|
||||
k += 2
|
||||
p *= k
|
||||
if k <= MAX:
|
||||
memo[k] = p
|
||||
return p
|
||||
|
||||
if BACKEND == 'gmpy':
|
||||
ifac = gmpy.fac
|
||||
elif BACKEND == 'sage':
|
||||
ifac = lambda n: int(sage.factorial(n))
|
||||
ifib = sage.fibonacci
|
||||
|
||||
def list_primes(n):
|
||||
n = n + 1
|
||||
sieve = list(xrange(n))
|
||||
sieve[:2] = [0, 0]
|
||||
for i in xrange(2, int(n**0.5)+1):
|
||||
if sieve[i]:
|
||||
for j in xrange(i**2, n, i):
|
||||
sieve[j] = 0
|
||||
return [p for p in sieve if p]
|
||||
|
||||
if BACKEND == 'sage':
|
||||
# Note: it is *VERY* important for performance that we convert
|
||||
# the list to Python ints.
|
||||
def list_primes(n):
|
||||
return [int(_) for _ in sage.primes(n+1)]
|
||||
|
||||
small_odd_primes = (3,5,7,11,13,17,19,23,29,31,37,41,43,47)
|
||||
small_odd_primes_set = set(small_odd_primes)
|
||||
|
||||
def isprime(n):
|
||||
"""
|
||||
Determines whether n is a prime number. A probabilistic test is
|
||||
performed if n is very large. No special trick is used for detecting
|
||||
perfect powers.
|
||||
|
||||
>>> sum(list_primes(100000))
|
||||
454396537
|
||||
>>> sum(n*isprime(n) for n in range(100000))
|
||||
454396537
|
||||
|
||||
"""
|
||||
n = int(n)
|
||||
if not n & 1:
|
||||
return n == 2
|
||||
if n < 50:
|
||||
return n in small_odd_primes_set
|
||||
for p in small_odd_primes:
|
||||
if not n % p:
|
||||
return False
|
||||
m = n-1
|
||||
s = trailing(m)
|
||||
d = m >> s
|
||||
def test(a):
|
||||
x = pow(a,d,n)
|
||||
if x == 1 or x == m:
|
||||
return True
|
||||
for r in xrange(1,s):
|
||||
x = x**2 % n
|
||||
if x == m:
|
||||
return True
|
||||
return False
|
||||
# See http://primes.utm.edu/prove/prove2_3.html
|
||||
if n < 1373653:
|
||||
witnesses = [2,3]
|
||||
elif n < 341550071728321:
|
||||
witnesses = [2,3,5,7,11,13,17]
|
||||
else:
|
||||
witnesses = small_odd_primes
|
||||
for a in witnesses:
|
||||
if not test(a):
|
||||
return False
|
||||
return True
|
||||
|
||||
def moebius(n):
|
||||
"""
|
||||
Evaluates the Moebius function which is `mu(n) = (-1)^k` if `n`
|
||||
is a product of `k` distinct primes and `mu(n) = 0` otherwise.
|
||||
|
||||
TODO: speed up using factorization
|
||||
"""
|
||||
n = abs(int(n))
|
||||
if n < 2:
|
||||
return n
|
||||
factors = []
|
||||
for p in xrange(2, n+1):
|
||||
if not (n % p):
|
||||
if not (n % p**2):
|
||||
return 0
|
||||
if not sum(p % f for f in factors):
|
||||
factors.append(p)
|
||||
return (-1)**len(factors)
|
||||
|
||||
def gcd(*args):
|
||||
a = 0
|
||||
for b in args:
|
||||
if a:
|
||||
while b:
|
||||
a, b = b, a % b
|
||||
else:
|
||||
a = b
|
||||
return a
|
||||
|
||||
|
||||
# Comment by Juan Arias de Reyna:
|
||||
#
|
||||
# I learn this method to compute EulerE[2n] from van de Lune.
|
||||
#
|
||||
# We apply the formula EulerE[2n] = (-1)^n 2**(-2n) sum_{j=0}^n a(2n,2j+1)
|
||||
#
|
||||
# where the numbers a(n,j) vanish for j > n+1 or j <= -1 and satisfies
|
||||
#
|
||||
# a(0,-1) = a(0,0) = 0; a(0,1)= 1; a(0,2) = a(0,3) = 0
|
||||
#
|
||||
# a(n,j) = a(n-1,j) when n+j is even
|
||||
# a(n,j) = (j-1) a(n-1,j-1) + (j+1) a(n-1,j+1) when n+j is odd
|
||||
#
|
||||
#
|
||||
# But we can use only one array unidimensional a(j) since to compute
|
||||
# a(n,j) we only need to know a(n-1,k) where k and j are of different parity
|
||||
# and we have not to conserve the used values.
|
||||
#
|
||||
# We cached up the values of Euler numbers to sufficiently high order.
|
||||
#
|
||||
# Important Observation: If we pretend to use the numbers
|
||||
# EulerE[1], EulerE[2], ... , EulerE[n]
|
||||
# it is convenient to compute first EulerE[n], since the algorithm
|
||||
# computes first all
|
||||
# the previous ones, and keeps them in the CACHE
|
||||
|
||||
MAX_EULER_CACHE = 500
|
||||
|
||||
def eulernum(m, _cache={0:MPZ_ONE}):
|
||||
r"""
|
||||
Computes the Euler numbers `E(n)`, which can be defined as
|
||||
coefficients of the Taylor expansion of `1/cosh x`:
|
||||
|
||||
.. math ::
|
||||
|
||||
\frac{1}{\cosh x} = \sum_{n=0}^\infty \frac{E_n}{n!} x^n
|
||||
|
||||
Example::
|
||||
|
||||
>>> [int(eulernum(n)) for n in range(11)]
|
||||
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
|
||||
>>> [int(eulernum(n)) for n in range(11)] # test cache
|
||||
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
|
||||
|
||||
"""
|
||||
# for odd m > 1, the Euler numbers are zero
|
||||
if m & 1:
|
||||
return MPZ_ZERO
|
||||
f = _cache.get(m)
|
||||
if f:
|
||||
return f
|
||||
MAX = MAX_EULER_CACHE
|
||||
n = m
|
||||
a = [MPZ(_) for _ in [0,0,1,0,0,0]]
|
||||
for n in range(1, m+1):
|
||||
for j in range(n+1, -1, -2):
|
||||
a[j+1] = (j-1)*a[j] + (j+1)*a[j+2]
|
||||
a.append(0)
|
||||
suma = 0
|
||||
for k in range(n+1, -1, -2):
|
||||
suma += a[k+1]
|
||||
if n <= MAX:
|
||||
_cache[n] = ((-1)**(n//2))*(suma // 2**n)
|
||||
if n == m:
|
||||
return ((-1)**(n//2))*suma // 2**n
|
||||
|
||||
def stirling1(n, k):
|
||||
"""
|
||||
Stirling number of the first kind.
|
||||
"""
|
||||
if n < 0 or k < 0:
|
||||
raise ValueError
|
||||
if k >= n:
|
||||
return MPZ(n == k)
|
||||
if k < 1:
|
||||
return MPZ_ZERO
|
||||
L = [MPZ_ZERO] * (k+1)
|
||||
L[1] = MPZ_ONE
|
||||
for m in xrange(2, n+1):
|
||||
for j in xrange(min(k, m), 0, -1):
|
||||
L[j] = (m-1) * L[j] + L[j-1]
|
||||
return (-1)**(n+k) * L[k]
|
||||
|
||||
def stirling2(n, k):
|
||||
"""
|
||||
Stirling number of the second kind.
|
||||
"""
|
||||
if n < 0 or k < 0:
|
||||
raise ValueError
|
||||
if k >= n:
|
||||
return MPZ(n == k)
|
||||
if k <= 1:
|
||||
return MPZ(k == 1)
|
||||
s = MPZ_ZERO
|
||||
t = MPZ_ONE
|
||||
for j in xrange(k+1):
|
||||
if (k + j) & 1:
|
||||
s -= t * MPZ(j)**n
|
||||
else:
|
||||
s += t * MPZ(j)**n
|
||||
t = t * (k - j) // (j + 1)
|
||||
return s // ifac(k)
|
||||
@@ -0,0 +1,835 @@
|
||||
"""
|
||||
Low-level functions for complex arithmetic.
|
||||
"""
|
||||
|
||||
import sys
|
||||
|
||||
from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, BACKEND
|
||||
|
||||
from .libmpf import (\
|
||||
round_floor, round_ceiling, round_down, round_up,
|
||||
round_nearest, round_fast, bitcount,
|
||||
bctable, normalize, normalize1, reciprocal_rnd, rshift, lshift, giant_steps,
|
||||
negative_rnd,
|
||||
to_str, to_fixed, from_man_exp, from_float, to_float, from_int, to_int,
|
||||
fzero, fone, ftwo, fhalf, finf, fninf, fnan, fnone,
|
||||
mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul,
|
||||
mpf_div, mpf_mul_int, mpf_shift, mpf_sqrt, mpf_hypot,
|
||||
mpf_rdiv_int, mpf_floor, mpf_ceil, mpf_nint, mpf_frac,
|
||||
mpf_sign, mpf_hash,
|
||||
ComplexResult
|
||||
)
|
||||
|
||||
from .libelefun import (\
|
||||
mpf_pi, mpf_exp, mpf_log, mpf_cos_sin, mpf_cosh_sinh, mpf_tan, mpf_pow_int,
|
||||
mpf_log_hypot,
|
||||
mpf_cos_sin_pi, mpf_phi,
|
||||
mpf_cos, mpf_sin, mpf_cos_pi, mpf_sin_pi,
|
||||
mpf_atan, mpf_atan2, mpf_cosh, mpf_sinh, mpf_tanh,
|
||||
mpf_asin, mpf_acos, mpf_acosh, mpf_nthroot, mpf_fibonacci
|
||||
)
|
||||
|
||||
# An mpc value is a (real, imag) tuple
|
||||
mpc_one = fone, fzero
|
||||
mpc_zero = fzero, fzero
|
||||
mpc_two = ftwo, fzero
|
||||
mpc_half = (fhalf, fzero)
|
||||
|
||||
_infs = (finf, fninf)
|
||||
_infs_nan = (finf, fninf, fnan)
|
||||
|
||||
def mpc_is_inf(z):
|
||||
"""Check if either real or imaginary part is infinite"""
|
||||
re, im = z
|
||||
if re in _infs: return True
|
||||
if im in _infs: return True
|
||||
return False
|
||||
|
||||
def mpc_is_infnan(z):
|
||||
"""Check if either real or imaginary part is infinite or nan"""
|
||||
re, im = z
|
||||
if re in _infs_nan: return True
|
||||
if im in _infs_nan: return True
|
||||
return False
|
||||
|
||||
def mpc_to_str(z, dps, **kwargs):
|
||||
re, im = z
|
||||
rs = to_str(re, dps)
|
||||
if im[0]:
|
||||
return rs + " - " + to_str(mpf_neg(im), dps, **kwargs) + "j"
|
||||
else:
|
||||
return rs + " + " + to_str(im, dps, **kwargs) + "j"
|
||||
|
||||
def mpc_to_complex(z, strict=False, rnd=round_fast):
|
||||
re, im = z
|
||||
return complex(to_float(re, strict, rnd), to_float(im, strict, rnd))
|
||||
|
||||
def mpc_hash(z):
|
||||
if sys.version_info >= (3, 2):
|
||||
re, im = z
|
||||
h = mpf_hash(re) + sys.hash_info.imag * mpf_hash(im)
|
||||
# Need to reduce either module 2^32 or 2^64
|
||||
h = h % (2**sys.hash_info.width)
|
||||
return int(h)
|
||||
else:
|
||||
try:
|
||||
return hash(mpc_to_complex(z, strict=True))
|
||||
except OverflowError:
|
||||
return hash(z)
|
||||
|
||||
def mpc_conjugate(z, prec, rnd=round_fast):
|
||||
re, im = z
|
||||
return re, mpf_neg(im, prec, rnd)
|
||||
|
||||
def mpc_is_nonzero(z):
|
||||
return z != mpc_zero
|
||||
|
||||
def mpc_add(z, w, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
c, d = w
|
||||
return mpf_add(a, c, prec, rnd), mpf_add(b, d, prec, rnd)
|
||||
|
||||
def mpc_add_mpf(z, x, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
return mpf_add(a, x, prec, rnd), b
|
||||
|
||||
def mpc_sub(z, w, prec=0, rnd=round_fast):
|
||||
a, b = z
|
||||
c, d = w
|
||||
return mpf_sub(a, c, prec, rnd), mpf_sub(b, d, prec, rnd)
|
||||
|
||||
def mpc_sub_mpf(z, p, prec=0, rnd=round_fast):
|
||||
a, b = z
|
||||
return mpf_sub(a, p, prec, rnd), b
|
||||
|
||||
def mpc_pos(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
return mpf_pos(a, prec, rnd), mpf_pos(b, prec, rnd)
|
||||
|
||||
def mpc_neg(z, prec=None, rnd=round_fast):
|
||||
a, b = z
|
||||
return mpf_neg(a, prec, rnd), mpf_neg(b, prec, rnd)
|
||||
|
||||
def mpc_shift(z, n):
|
||||
a, b = z
|
||||
return mpf_shift(a, n), mpf_shift(b, n)
|
||||
|
||||
def mpc_abs(z, prec, rnd=round_fast):
|
||||
"""Absolute value of a complex number, |a+bi|.
|
||||
Returns an mpf value."""
|
||||
a, b = z
|
||||
return mpf_hypot(a, b, prec, rnd)
|
||||
|
||||
def mpc_arg(z, prec, rnd=round_fast):
|
||||
"""Argument of a complex number. Returns an mpf value."""
|
||||
a, b = z
|
||||
return mpf_atan2(b, a, prec, rnd)
|
||||
|
||||
def mpc_floor(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
return mpf_floor(a, prec, rnd), mpf_floor(b, prec, rnd)
|
||||
|
||||
def mpc_ceil(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
return mpf_ceil(a, prec, rnd), mpf_ceil(b, prec, rnd)
|
||||
|
||||
def mpc_nint(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
return mpf_nint(a, prec, rnd), mpf_nint(b, prec, rnd)
|
||||
|
||||
def mpc_frac(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
return mpf_frac(a, prec, rnd), mpf_frac(b, prec, rnd)
|
||||
|
||||
|
||||
def mpc_mul(z, w, prec, rnd=round_fast):
|
||||
"""
|
||||
Complex multiplication.
|
||||
|
||||
Returns the real and imaginary part of (a+bi)*(c+di), rounded to
|
||||
the specified precision. The rounding mode applies to the real and
|
||||
imaginary parts separately.
|
||||
"""
|
||||
a, b = z
|
||||
c, d = w
|
||||
p = mpf_mul(a, c)
|
||||
q = mpf_mul(b, d)
|
||||
r = mpf_mul(a, d)
|
||||
s = mpf_mul(b, c)
|
||||
re = mpf_sub(p, q, prec, rnd)
|
||||
im = mpf_add(r, s, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_square(z, prec, rnd=round_fast):
|
||||
# (a+b*I)**2 == a**2 - b**2 + 2*I*a*b
|
||||
a, b = z
|
||||
p = mpf_mul(a,a)
|
||||
q = mpf_mul(b,b)
|
||||
r = mpf_mul(a,b, prec, rnd)
|
||||
re = mpf_sub(p, q, prec, rnd)
|
||||
im = mpf_shift(r, 1)
|
||||
return re, im
|
||||
|
||||
def mpc_mul_mpf(z, p, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
re = mpf_mul(a, p, prec, rnd)
|
||||
im = mpf_mul(b, p, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_mul_imag_mpf(z, x, prec, rnd=round_fast):
|
||||
"""
|
||||
Multiply the mpc value z by I*x where x is an mpf value.
|
||||
"""
|
||||
a, b = z
|
||||
re = mpf_neg(mpf_mul(b, x, prec, rnd))
|
||||
im = mpf_mul(a, x, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_mul_int(z, n, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
re = mpf_mul_int(a, n, prec, rnd)
|
||||
im = mpf_mul_int(b, n, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_div(z, w, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
c, d = w
|
||||
wp = prec + 10
|
||||
# mag = c*c + d*d
|
||||
mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp)
|
||||
# (a*c+b*d)/mag, (b*c-a*d)/mag
|
||||
t = mpf_add(mpf_mul(a,c), mpf_mul(b,d), wp)
|
||||
u = mpf_sub(mpf_mul(b,c), mpf_mul(a,d), wp)
|
||||
return mpf_div(t,mag,prec,rnd), mpf_div(u,mag,prec,rnd)
|
||||
|
||||
def mpc_div_mpf(z, p, prec, rnd=round_fast):
|
||||
"""Calculate z/p where p is real"""
|
||||
a, b = z
|
||||
re = mpf_div(a, p, prec, rnd)
|
||||
im = mpf_div(b, p, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_reciprocal(z, prec, rnd=round_fast):
|
||||
"""Calculate 1/z efficiently"""
|
||||
a, b = z
|
||||
m = mpf_add(mpf_mul(a,a),mpf_mul(b,b),prec+10)
|
||||
re = mpf_div(a, m, prec, rnd)
|
||||
im = mpf_neg(mpf_div(b, m, prec, rnd))
|
||||
return re, im
|
||||
|
||||
def mpc_mpf_div(p, z, prec, rnd=round_fast):
|
||||
"""Calculate p/z where p is real efficiently"""
|
||||
a, b = z
|
||||
m = mpf_add(mpf_mul(a,a),mpf_mul(b,b), prec+10)
|
||||
re = mpf_div(mpf_mul(a,p), m, prec, rnd)
|
||||
im = mpf_div(mpf_neg(mpf_mul(b,p)), m, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def complex_int_pow(a, b, n):
|
||||
"""Complex integer power: computes (a+b*I)**n exactly for
|
||||
nonnegative n (a and b must be Python ints)."""
|
||||
wre = 1
|
||||
wim = 0
|
||||
while n:
|
||||
if n & 1:
|
||||
wre, wim = wre*a - wim*b, wim*a + wre*b
|
||||
n -= 1
|
||||
a, b = a*a - b*b, 2*a*b
|
||||
n //= 2
|
||||
return wre, wim
|
||||
|
||||
def mpc_pow(z, w, prec, rnd=round_fast):
|
||||
if w[1] == fzero:
|
||||
return mpc_pow_mpf(z, w[0], prec, rnd)
|
||||
return mpc_exp(mpc_mul(mpc_log(z, prec+10), w, prec+10), prec, rnd)
|
||||
|
||||
def mpc_pow_mpf(z, p, prec, rnd=round_fast):
|
||||
psign, pman, pexp, pbc = p
|
||||
if pexp >= 0:
|
||||
return mpc_pow_int(z, (-1)**psign * (pman<<pexp), prec, rnd)
|
||||
if pexp == -1:
|
||||
sqrtz = mpc_sqrt(z, prec+10)
|
||||
return mpc_pow_int(sqrtz, (-1)**psign * pman, prec, rnd)
|
||||
return mpc_exp(mpc_mul_mpf(mpc_log(z, prec+10), p, prec+10), prec, rnd)
|
||||
|
||||
def mpc_pow_int(z, n, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
if b == fzero:
|
||||
return mpf_pow_int(a, n, prec, rnd), fzero
|
||||
if a == fzero:
|
||||
v = mpf_pow_int(b, n, prec, rnd)
|
||||
n %= 4
|
||||
if n == 0:
|
||||
return v, fzero
|
||||
elif n == 1:
|
||||
return fzero, v
|
||||
elif n == 2:
|
||||
return mpf_neg(v), fzero
|
||||
elif n == 3:
|
||||
return fzero, mpf_neg(v)
|
||||
if n == 0: return mpc_one
|
||||
if n == 1: return mpc_pos(z, prec, rnd)
|
||||
if n == 2: return mpc_square(z, prec, rnd)
|
||||
if n == -1: return mpc_reciprocal(z, prec, rnd)
|
||||
if n < 0: return mpc_reciprocal(mpc_pow_int(z, -n, prec+4), prec, rnd)
|
||||
asign, aman, aexp, abc = a
|
||||
bsign, bman, bexp, bbc = b
|
||||
if asign: aman = -aman
|
||||
if bsign: bman = -bman
|
||||
de = aexp - bexp
|
||||
abs_de = abs(de)
|
||||
exact_size = n*(abs_de + max(abc, bbc))
|
||||
if exact_size < 10000:
|
||||
if de > 0:
|
||||
aman <<= de
|
||||
aexp = bexp
|
||||
else:
|
||||
bman <<= (-de)
|
||||
bexp = aexp
|
||||
re, im = complex_int_pow(aman, bman, n)
|
||||
re = from_man_exp(re, int(n*aexp), prec, rnd)
|
||||
im = from_man_exp(im, int(n*bexp), prec, rnd)
|
||||
return re, im
|
||||
return mpc_exp(mpc_mul_int(mpc_log(z, prec+10), n, prec+10), prec, rnd)
|
||||
|
||||
def mpc_sqrt(z, prec, rnd=round_fast):
|
||||
"""Complex square root (principal branch).
|
||||
|
||||
We have sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i where
|
||||
r = abs(a+bi), when a+bi is not a negative real number."""
|
||||
a, b = z
|
||||
if b == fzero:
|
||||
if a == fzero:
|
||||
return (a, b)
|
||||
# When a+bi is a negative real number, we get a real sqrt times i
|
||||
if a[0]:
|
||||
im = mpf_sqrt(mpf_neg(a), prec, rnd)
|
||||
return (fzero, im)
|
||||
else:
|
||||
re = mpf_sqrt(a, prec, rnd)
|
||||
return (re, fzero)
|
||||
wp = prec+20
|
||||
if not a[0]: # case a positive
|
||||
t = mpf_add(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) + a
|
||||
u = mpf_shift(t, -1) # u = t/2
|
||||
re = mpf_sqrt(u, prec, rnd) # re = sqrt(u)
|
||||
v = mpf_shift(t, 1) # v = 2*t
|
||||
w = mpf_sqrt(v, wp) # w = sqrt(v)
|
||||
im = mpf_div(b, w, prec, rnd) # im = b / w
|
||||
else: # case a negative
|
||||
t = mpf_sub(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) - a
|
||||
u = mpf_shift(t, -1) # u = t/2
|
||||
im = mpf_sqrt(u, prec, rnd) # im = sqrt(u)
|
||||
v = mpf_shift(t, 1) # v = 2*t
|
||||
w = mpf_sqrt(v, wp) # w = sqrt(v)
|
||||
re = mpf_div(b, w, prec, rnd) # re = b/w
|
||||
if b[0]:
|
||||
re = mpf_neg(re)
|
||||
im = mpf_neg(im)
|
||||
return re, im
|
||||
|
||||
def mpc_nthroot_fixed(a, b, n, prec):
|
||||
# a, b signed integers at fixed precision prec
|
||||
start = 50
|
||||
a1 = int(rshift(a, prec - n*start))
|
||||
b1 = int(rshift(b, prec - n*start))
|
||||
try:
|
||||
r = (a1 + 1j * b1)**(1.0/n)
|
||||
re = r.real
|
||||
im = r.imag
|
||||
re = MPZ(int(re))
|
||||
im = MPZ(int(im))
|
||||
except OverflowError:
|
||||
a1 = from_int(a1, start)
|
||||
b1 = from_int(b1, start)
|
||||
fn = from_int(n)
|
||||
nth = mpf_rdiv_int(1, fn, start)
|
||||
re, im = mpc_pow((a1, b1), (nth, fzero), start)
|
||||
re = to_int(re)
|
||||
im = to_int(im)
|
||||
extra = 10
|
||||
prevp = start
|
||||
extra1 = n
|
||||
for p in giant_steps(start, prec+extra):
|
||||
# this is slow for large n, unlike int_pow_fixed
|
||||
re2, im2 = complex_int_pow(re, im, n-1)
|
||||
re2 = rshift(re2, (n-1)*prevp - p - extra1)
|
||||
im2 = rshift(im2, (n-1)*prevp - p - extra1)
|
||||
r4 = (re2*re2 + im2*im2) >> (p + extra1)
|
||||
ap = rshift(a, prec - p)
|
||||
bp = rshift(b, prec - p)
|
||||
rec = (ap * re2 + bp * im2) >> p
|
||||
imc = (-ap * im2 + bp * re2) >> p
|
||||
reb = (rec << p) // r4
|
||||
imb = (imc << p) // r4
|
||||
re = (reb + (n-1)*lshift(re, p-prevp))//n
|
||||
im = (imb + (n-1)*lshift(im, p-prevp))//n
|
||||
prevp = p
|
||||
return re, im
|
||||
|
||||
def mpc_nthroot(z, n, prec, rnd=round_fast):
|
||||
"""
|
||||
Complex n-th root.
|
||||
|
||||
Use Newton method as in the real case when it is faster,
|
||||
otherwise use z**(1/n)
|
||||
"""
|
||||
a, b = z
|
||||
if a[0] == 0 and b == fzero:
|
||||
re = mpf_nthroot(a, n, prec, rnd)
|
||||
return (re, fzero)
|
||||
if n < 2:
|
||||
if n == 0:
|
||||
return mpc_one
|
||||
if n == 1:
|
||||
return mpc_pos((a, b), prec, rnd)
|
||||
if n == -1:
|
||||
return mpc_div(mpc_one, (a, b), prec, rnd)
|
||||
inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd])
|
||||
return mpc_div(mpc_one, inverse, prec, rnd)
|
||||
if n <= 20:
|
||||
prec2 = int(1.2 * (prec + 10))
|
||||
asign, aman, aexp, abc = a
|
||||
bsign, bman, bexp, bbc = b
|
||||
pf = mpc_abs((a,b), prec)
|
||||
if pf[-2] + pf[-1] > -10 and pf[-2] + pf[-1] < prec:
|
||||
af = to_fixed(a, prec2)
|
||||
bf = to_fixed(b, prec2)
|
||||
re, im = mpc_nthroot_fixed(af, bf, n, prec2)
|
||||
extra = 10
|
||||
re = from_man_exp(re, -prec2-extra, prec2, rnd)
|
||||
im = from_man_exp(im, -prec2-extra, prec2, rnd)
|
||||
return re, im
|
||||
fn = from_int(n)
|
||||
prec2 = prec+10 + 10
|
||||
nth = mpf_rdiv_int(1, fn, prec2)
|
||||
re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
|
||||
re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
|
||||
im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_cbrt(z, prec, rnd=round_fast):
|
||||
"""
|
||||
Complex cubic root.
|
||||
"""
|
||||
return mpc_nthroot(z, 3, prec, rnd)
|
||||
|
||||
def mpc_exp(z, prec, rnd=round_fast):
|
||||
"""
|
||||
Complex exponential function.
|
||||
|
||||
We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i)
|
||||
for the computation. This formula is very nice because it is
|
||||
pefectly stable; since we just do real multiplications, the only
|
||||
numerical errors that can creep in are single-ulp rounding errors.
|
||||
|
||||
The formula is efficient since mpmath's real exp is quite fast and
|
||||
since we can compute cos and sin simultaneously.
|
||||
|
||||
It is no problem if a and b are large; if the implementations of
|
||||
exp/cos/sin are accurate and efficient for all real numbers, then
|
||||
so is this function for all complex numbers.
|
||||
"""
|
||||
a, b = z
|
||||
if a == fzero:
|
||||
return mpf_cos_sin(b, prec, rnd)
|
||||
if b == fzero:
|
||||
return mpf_exp(a, prec, rnd), fzero
|
||||
mag = mpf_exp(a, prec+4, rnd)
|
||||
c, s = mpf_cos_sin(b, prec+4, rnd)
|
||||
re = mpf_mul(mag, c, prec, rnd)
|
||||
im = mpf_mul(mag, s, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_log(z, prec, rnd=round_fast):
|
||||
re = mpf_log_hypot(z[0], z[1], prec, rnd)
|
||||
im = mpc_arg(z, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_cos(z, prec, rnd=round_fast):
|
||||
"""Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) -
|
||||
sin(a)*sinh(b)*i.
|
||||
|
||||
The same comments apply as for the complex exp: only real
|
||||
multiplications are pewrormed, so no cancellation errors are
|
||||
possible. The formula is also efficient since we can compute both
|
||||
pairs (cos, sin) and (cosh, sinh) in single stwps."""
|
||||
a, b = z
|
||||
if b == fzero:
|
||||
return mpf_cos(a, prec, rnd), fzero
|
||||
if a == fzero:
|
||||
return mpf_cosh(b, prec, rnd), fzero
|
||||
wp = prec + 6
|
||||
c, s = mpf_cos_sin(a, wp)
|
||||
ch, sh = mpf_cosh_sinh(b, wp)
|
||||
re = mpf_mul(c, ch, prec, rnd)
|
||||
im = mpf_mul(s, sh, prec, rnd)
|
||||
return re, mpf_neg(im)
|
||||
|
||||
def mpc_sin(z, prec, rnd=round_fast):
|
||||
"""Complex sine. We have sin(a+bi) = sin(a)*cosh(b) +
|
||||
cos(a)*sinh(b)*i. See the docstring for mpc_cos for additional
|
||||
comments."""
|
||||
a, b = z
|
||||
if b == fzero:
|
||||
return mpf_sin(a, prec, rnd), fzero
|
||||
if a == fzero:
|
||||
return fzero, mpf_sinh(b, prec, rnd)
|
||||
wp = prec + 6
|
||||
c, s = mpf_cos_sin(a, wp)
|
||||
ch, sh = mpf_cosh_sinh(b, wp)
|
||||
re = mpf_mul(s, ch, prec, rnd)
|
||||
im = mpf_mul(c, sh, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_tan(z, prec, rnd=round_fast):
|
||||
"""Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i
|
||||
where M = cos(2a) + cosh(2b)."""
|
||||
a, b = z
|
||||
asign, aman, aexp, abc = a
|
||||
bsign, bman, bexp, bbc = b
|
||||
if b == fzero: return mpf_tan(a, prec, rnd), fzero
|
||||
if a == fzero: return fzero, mpf_tanh(b, prec, rnd)
|
||||
wp = prec + 15
|
||||
a = mpf_shift(a, 1)
|
||||
b = mpf_shift(b, 1)
|
||||
c, s = mpf_cos_sin(a, wp)
|
||||
ch, sh = mpf_cosh_sinh(b, wp)
|
||||
# TODO: handle cancellation when c ~= -1 and ch ~= 1
|
||||
mag = mpf_add(c, ch, wp)
|
||||
re = mpf_div(s, mag, prec, rnd)
|
||||
im = mpf_div(sh, mag, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_cos_pi(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
if b == fzero:
|
||||
return mpf_cos_pi(a, prec, rnd), fzero
|
||||
b = mpf_mul(b, mpf_pi(prec+5), prec+5)
|
||||
if a == fzero:
|
||||
return mpf_cosh(b, prec, rnd), fzero
|
||||
wp = prec + 6
|
||||
c, s = mpf_cos_sin_pi(a, wp)
|
||||
ch, sh = mpf_cosh_sinh(b, wp)
|
||||
re = mpf_mul(c, ch, prec, rnd)
|
||||
im = mpf_mul(s, sh, prec, rnd)
|
||||
return re, mpf_neg(im)
|
||||
|
||||
def mpc_sin_pi(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
if b == fzero:
|
||||
return mpf_sin_pi(a, prec, rnd), fzero
|
||||
b = mpf_mul(b, mpf_pi(prec+5), prec+5)
|
||||
if a == fzero:
|
||||
return fzero, mpf_sinh(b, prec, rnd)
|
||||
wp = prec + 6
|
||||
c, s = mpf_cos_sin_pi(a, wp)
|
||||
ch, sh = mpf_cosh_sinh(b, wp)
|
||||
re = mpf_mul(s, ch, prec, rnd)
|
||||
im = mpf_mul(c, sh, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_cos_sin(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
if a == fzero:
|
||||
ch, sh = mpf_cosh_sinh(b, prec, rnd)
|
||||
return (ch, fzero), (fzero, sh)
|
||||
if b == fzero:
|
||||
c, s = mpf_cos_sin(a, prec, rnd)
|
||||
return (c, fzero), (s, fzero)
|
||||
wp = prec + 6
|
||||
c, s = mpf_cos_sin(a, wp)
|
||||
ch, sh = mpf_cosh_sinh(b, wp)
|
||||
cre = mpf_mul(c, ch, prec, rnd)
|
||||
cim = mpf_mul(s, sh, prec, rnd)
|
||||
sre = mpf_mul(s, ch, prec, rnd)
|
||||
sim = mpf_mul(c, sh, prec, rnd)
|
||||
return (cre, mpf_neg(cim)), (sre, sim)
|
||||
|
||||
def mpc_cos_sin_pi(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
if b == fzero:
|
||||
c, s = mpf_cos_sin_pi(a, prec, rnd)
|
||||
return (c, fzero), (s, fzero)
|
||||
b = mpf_mul(b, mpf_pi(prec+5), prec+5)
|
||||
if a == fzero:
|
||||
ch, sh = mpf_cosh_sinh(b, prec, rnd)
|
||||
return (ch, fzero), (fzero, sh)
|
||||
wp = prec + 6
|
||||
c, s = mpf_cos_sin_pi(a, wp)
|
||||
ch, sh = mpf_cosh_sinh(b, wp)
|
||||
cre = mpf_mul(c, ch, prec, rnd)
|
||||
cim = mpf_mul(s, sh, prec, rnd)
|
||||
sre = mpf_mul(s, ch, prec, rnd)
|
||||
sim = mpf_mul(c, sh, prec, rnd)
|
||||
return (cre, mpf_neg(cim)), (sre, sim)
|
||||
|
||||
def mpc_cosh(z, prec, rnd=round_fast):
|
||||
"""Complex hyperbolic cosine. Computed as cosh(z) = cos(z*i)."""
|
||||
a, b = z
|
||||
return mpc_cos((b, mpf_neg(a)), prec, rnd)
|
||||
|
||||
def mpc_sinh(z, prec, rnd=round_fast):
|
||||
"""Complex hyperbolic sine. Computed as sinh(z) = -i*sin(z*i)."""
|
||||
a, b = z
|
||||
b, a = mpc_sin((b, a), prec, rnd)
|
||||
return a, b
|
||||
|
||||
def mpc_tanh(z, prec, rnd=round_fast):
|
||||
"""Complex hyperbolic tangent. Computed as tanh(z) = -i*tan(z*i)."""
|
||||
a, b = z
|
||||
b, a = mpc_tan((b, a), prec, rnd)
|
||||
return a, b
|
||||
|
||||
# TODO: avoid loss of accuracy
|
||||
def mpc_atan(z, prec, rnd=round_fast):
|
||||
a, b = z
|
||||
# atan(z) = (I/2)*(log(1-I*z) - log(1+I*z))
|
||||
# x = 1-I*z = 1 + b - I*a
|
||||
# y = 1+I*z = 1 - b + I*a
|
||||
wp = prec + 15
|
||||
x = mpf_add(fone, b, wp), mpf_neg(a)
|
||||
y = mpf_sub(fone, b, wp), a
|
||||
l1 = mpc_log(x, wp)
|
||||
l2 = mpc_log(y, wp)
|
||||
a, b = mpc_sub(l1, l2, prec, rnd)
|
||||
# (I/2) * (a+b*I) = (-b/2 + a/2*I)
|
||||
v = mpf_neg(mpf_shift(b,-1)), mpf_shift(a,-1)
|
||||
# Subtraction at infinity gives correct real part but
|
||||
# wrong imaginary part (should be zero)
|
||||
if v[1] == fnan and mpc_is_inf(z):
|
||||
v = (v[0], fzero)
|
||||
return v
|
||||
|
||||
beta_crossover = from_float(0.6417)
|
||||
alpha_crossover = from_float(1.5)
|
||||
|
||||
def acos_asin(z, prec, rnd, n):
|
||||
""" complex acos for n = 0, asin for n = 1
|
||||
The algorithm is described in
|
||||
T.E. Hull, T.F. Fairgrieve and P.T.P. Tang
|
||||
'Implementing the Complex Arcsine and Arcosine Functions
|
||||
using Exception Handling',
|
||||
ACM Trans. on Math. Software Vol. 23 (1997), p299
|
||||
The complex acos and asin can be defined as
|
||||
acos(z) = acos(beta) - I*sign(a)* log(alpha + sqrt(alpha**2 -1))
|
||||
asin(z) = asin(beta) + I*sign(a)* log(alpha + sqrt(alpha**2 -1))
|
||||
where z = a + I*b
|
||||
alpha = (1/2)*(r + s); beta = (1/2)*(r - s) = a/alpha
|
||||
r = sqrt((a+1)**2 + y**2); s = sqrt((a-1)**2 + y**2)
|
||||
These expressions are rewritten in different ways in different
|
||||
regions, delimited by two crossovers alpha_crossover and beta_crossover,
|
||||
and by abs(a) <= 1, in order to improve the numerical accuracy.
|
||||
"""
|
||||
a, b = z
|
||||
wp = prec + 10
|
||||
# special cases with real argument
|
||||
if b == fzero:
|
||||
am = mpf_sub(fone, mpf_abs(a), wp)
|
||||
# case abs(a) <= 1
|
||||
if not am[0]:
|
||||
if n == 0:
|
||||
return mpf_acos(a, prec, rnd), fzero
|
||||
else:
|
||||
return mpf_asin(a, prec, rnd), fzero
|
||||
# cases abs(a) > 1
|
||||
else:
|
||||
# case a < -1
|
||||
if a[0]:
|
||||
pi = mpf_pi(prec, rnd)
|
||||
c = mpf_acosh(mpf_neg(a), prec, rnd)
|
||||
if n == 0:
|
||||
return pi, mpf_neg(c)
|
||||
else:
|
||||
return mpf_neg(mpf_shift(pi, -1)), c
|
||||
# case a > 1
|
||||
else:
|
||||
c = mpf_acosh(a, prec, rnd)
|
||||
if n == 0:
|
||||
return fzero, c
|
||||
else:
|
||||
pi = mpf_pi(prec, rnd)
|
||||
return mpf_shift(pi, -1), mpf_neg(c)
|
||||
asign = bsign = 0
|
||||
if a[0]:
|
||||
a = mpf_neg(a)
|
||||
asign = 1
|
||||
if b[0]:
|
||||
b = mpf_neg(b)
|
||||
bsign = 1
|
||||
am = mpf_sub(fone, a, wp)
|
||||
ap = mpf_add(fone, a, wp)
|
||||
r = mpf_hypot(ap, b, wp)
|
||||
s = mpf_hypot(am, b, wp)
|
||||
alpha = mpf_shift(mpf_add(r, s, wp), -1)
|
||||
beta = mpf_div(a, alpha, wp)
|
||||
b2 = mpf_mul(b,b, wp)
|
||||
# case beta <= beta_crossover
|
||||
if not mpf_sub(beta_crossover, beta, wp)[0]:
|
||||
if n == 0:
|
||||
re = mpf_acos(beta, wp)
|
||||
else:
|
||||
re = mpf_asin(beta, wp)
|
||||
else:
|
||||
# to compute the real part in this region use the identity
|
||||
# asin(beta) = atan(beta/sqrt(1-beta**2))
|
||||
# beta/sqrt(1-beta**2) = (alpha + a) * (alpha - a)
|
||||
# alpha + a is numerically accurate; alpha - a can have
|
||||
# cancellations leading to numerical inaccuracies, so rewrite
|
||||
# it in differente ways according to the region
|
||||
Ax = mpf_add(alpha, a, wp)
|
||||
# case a <= 1
|
||||
if not am[0]:
|
||||
# c = b*b/(r + (a+1)); d = (s + (1-a))
|
||||
# alpha - a = (1/2)*(c + d)
|
||||
# case n=0: re = atan(sqrt((1/2) * Ax * (c + d))/a)
|
||||
# case n=1: re = atan(a/sqrt((1/2) * Ax * (c + d)))
|
||||
c = mpf_div(b2, mpf_add(r, ap, wp), wp)
|
||||
d = mpf_add(s, am, wp)
|
||||
re = mpf_shift(mpf_mul(Ax, mpf_add(c, d, wp), wp), -1)
|
||||
if n == 0:
|
||||
re = mpf_atan(mpf_div(mpf_sqrt(re, wp), a, wp), wp)
|
||||
else:
|
||||
re = mpf_atan(mpf_div(a, mpf_sqrt(re, wp), wp), wp)
|
||||
else:
|
||||
# c = Ax/(r + (a+1)); d = Ax/(s - (1-a))
|
||||
# alpha - a = (1/2)*(c + d)
|
||||
# case n = 0: re = atan(b*sqrt(c + d)/2/a)
|
||||
# case n = 1: re = atan(a/(b*sqrt(c + d)/2)
|
||||
c = mpf_div(Ax, mpf_add(r, ap, wp), wp)
|
||||
d = mpf_div(Ax, mpf_sub(s, am, wp), wp)
|
||||
re = mpf_shift(mpf_add(c, d, wp), -1)
|
||||
re = mpf_mul(b, mpf_sqrt(re, wp), wp)
|
||||
if n == 0:
|
||||
re = mpf_atan(mpf_div(re, a, wp), wp)
|
||||
else:
|
||||
re = mpf_atan(mpf_div(a, re, wp), wp)
|
||||
# to compute alpha + sqrt(alpha**2 - 1), if alpha <= alpha_crossover
|
||||
# replace it with 1 + Am1 + sqrt(Am1*(alpha+1)))
|
||||
# where Am1 = alpha -1
|
||||
# if alpha <= alpha_crossover:
|
||||
if not mpf_sub(alpha_crossover, alpha, wp)[0]:
|
||||
c1 = mpf_div(b2, mpf_add(r, ap, wp), wp)
|
||||
# case a < 1
|
||||
if mpf_neg(am)[0]:
|
||||
# Am1 = (1/2) * (b*b/(r + (a+1)) + b*b/(s + (1-a))
|
||||
c2 = mpf_add(s, am, wp)
|
||||
c2 = mpf_div(b2, c2, wp)
|
||||
Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
|
||||
else:
|
||||
# Am1 = (1/2) * (b*b/(r + (a+1)) + (s - (1-a)))
|
||||
c2 = mpf_sub(s, am, wp)
|
||||
Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
|
||||
# im = log(1 + Am1 + sqrt(Am1*(alpha+1)))
|
||||
im = mpf_mul(Am1, mpf_add(alpha, fone, wp), wp)
|
||||
im = mpf_log(mpf_add(fone, mpf_add(Am1, mpf_sqrt(im, wp), wp), wp), wp)
|
||||
else:
|
||||
# im = log(alpha + sqrt(alpha*alpha - 1))
|
||||
im = mpf_sqrt(mpf_sub(mpf_mul(alpha, alpha, wp), fone, wp), wp)
|
||||
im = mpf_log(mpf_add(alpha, im, wp), wp)
|
||||
if asign:
|
||||
if n == 0:
|
||||
re = mpf_sub(mpf_pi(wp), re, wp)
|
||||
else:
|
||||
re = mpf_neg(re)
|
||||
if not bsign and n == 0:
|
||||
im = mpf_neg(im)
|
||||
if bsign and n == 1:
|
||||
im = mpf_neg(im)
|
||||
re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
|
||||
im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpc_acos(z, prec, rnd=round_fast):
|
||||
return acos_asin(z, prec, rnd, 0)
|
||||
|
||||
def mpc_asin(z, prec, rnd=round_fast):
|
||||
return acos_asin(z, prec, rnd, 1)
|
||||
|
||||
def mpc_asinh(z, prec, rnd=round_fast):
|
||||
# asinh(z) = I * asin(-I z)
|
||||
a, b = z
|
||||
a, b = mpc_asin((b, mpf_neg(a)), prec, rnd)
|
||||
return mpf_neg(b), a
|
||||
|
||||
def mpc_acosh(z, prec, rnd=round_fast):
|
||||
# acosh(z) = -I * acos(z) for Im(acos(z)) <= 0
|
||||
# +I * acos(z) otherwise
|
||||
a, b = mpc_acos(z, prec, rnd)
|
||||
if b[0] or b == fzero:
|
||||
return mpf_neg(b), a
|
||||
else:
|
||||
return b, mpf_neg(a)
|
||||
|
||||
def mpc_atanh(z, prec, rnd=round_fast):
|
||||
# atanh(z) = (log(1+z)-log(1-z))/2
|
||||
wp = prec + 15
|
||||
a = mpc_add(z, mpc_one, wp)
|
||||
b = mpc_sub(mpc_one, z, wp)
|
||||
a = mpc_log(a, wp)
|
||||
b = mpc_log(b, wp)
|
||||
v = mpc_shift(mpc_sub(a, b, wp), -1)
|
||||
# Subtraction at infinity gives correct imaginary part but
|
||||
# wrong real part (should be zero)
|
||||
if v[0] == fnan and mpc_is_inf(z):
|
||||
v = (fzero, v[1])
|
||||
return v
|
||||
|
||||
def mpc_fibonacci(z, prec, rnd=round_fast):
|
||||
re, im = z
|
||||
if im == fzero:
|
||||
return (mpf_fibonacci(re, prec, rnd), fzero)
|
||||
size = max(abs(re[2]+re[3]), abs(re[2]+re[3]))
|
||||
wp = prec + size + 20
|
||||
a = mpf_phi(wp)
|
||||
b = mpf_add(mpf_shift(a, 1), fnone, wp)
|
||||
u = mpc_pow((a, fzero), z, wp)
|
||||
v = mpc_cos_pi(z, wp)
|
||||
v = mpc_div(v, u, wp)
|
||||
u = mpc_sub(u, v, wp)
|
||||
u = mpc_div_mpf(u, b, prec, rnd)
|
||||
return u
|
||||
|
||||
def mpf_expj(x, prec, rnd='f'):
|
||||
raise ComplexResult
|
||||
|
||||
def mpc_expj(z, prec, rnd='f'):
|
||||
re, im = z
|
||||
if im == fzero:
|
||||
return mpf_cos_sin(re, prec, rnd)
|
||||
if re == fzero:
|
||||
return mpf_exp(mpf_neg(im), prec, rnd), fzero
|
||||
ey = mpf_exp(mpf_neg(im), prec+10)
|
||||
c, s = mpf_cos_sin(re, prec+10)
|
||||
re = mpf_mul(ey, c, prec, rnd)
|
||||
im = mpf_mul(ey, s, prec, rnd)
|
||||
return re, im
|
||||
|
||||
def mpf_expjpi(x, prec, rnd='f'):
|
||||
raise ComplexResult
|
||||
|
||||
def mpc_expjpi(z, prec, rnd='f'):
|
||||
re, im = z
|
||||
if im == fzero:
|
||||
return mpf_cos_sin_pi(re, prec, rnd)
|
||||
sign, man, exp, bc = im
|
||||
wp = prec+10
|
||||
if man:
|
||||
wp += max(0, exp+bc)
|
||||
im = mpf_neg(mpf_mul(mpf_pi(wp), im, wp))
|
||||
if re == fzero:
|
||||
return mpf_exp(im, prec, rnd), fzero
|
||||
ey = mpf_exp(im, prec+10)
|
||||
c, s = mpf_cos_sin_pi(re, prec+10)
|
||||
re = mpf_mul(ey, c, prec, rnd)
|
||||
im = mpf_mul(ey, s, prec, rnd)
|
||||
return re, im
|
||||
|
||||
|
||||
if BACKEND == 'sage':
|
||||
try:
|
||||
import sage.libs.mpmath.ext_libmp as _lbmp
|
||||
mpc_exp = _lbmp.mpc_exp
|
||||
mpc_sqrt = _lbmp.mpc_sqrt
|
||||
except (ImportError, AttributeError):
|
||||
print("Warning: Sage imports in libmpc failed")
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,935 @@
|
||||
"""
|
||||
Computational functions for interval arithmetic.
|
||||
|
||||
"""
|
||||
|
||||
from .backend import xrange
|
||||
|
||||
from .libmpf import (
|
||||
ComplexResult,
|
||||
round_down, round_up, round_floor, round_ceiling, round_nearest,
|
||||
prec_to_dps, repr_dps, dps_to_prec,
|
||||
bitcount,
|
||||
from_float,
|
||||
fnan, finf, fninf, fzero, fhalf, fone, fnone,
|
||||
mpf_sign, mpf_lt, mpf_le, mpf_gt, mpf_ge, mpf_eq, mpf_cmp,
|
||||
mpf_min_max,
|
||||
mpf_floor, from_int, to_int, to_str, from_str,
|
||||
mpf_abs, mpf_neg, mpf_pos, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
|
||||
mpf_div, mpf_shift, mpf_pow_int,
|
||||
from_man_exp, MPZ_ONE)
|
||||
|
||||
from .libelefun import (
|
||||
mpf_log, mpf_exp, mpf_sqrt, mpf_atan, mpf_atan2,
|
||||
mpf_pi, mod_pi2, mpf_cos_sin
|
||||
)
|
||||
|
||||
from .gammazeta import mpf_gamma, mpf_rgamma, mpf_loggamma, mpc_loggamma
|
||||
|
||||
def mpi_str(s, prec):
|
||||
sa, sb = s
|
||||
dps = prec_to_dps(prec) + 5
|
||||
return "[%s, %s]" % (to_str(sa, dps), to_str(sb, dps))
|
||||
#dps = prec_to_dps(prec)
|
||||
#m = mpi_mid(s, prec)
|
||||
#d = mpf_shift(mpi_delta(s, 20), -1)
|
||||
#return "%s +/- %s" % (to_str(m, dps), to_str(d, 3))
|
||||
|
||||
mpi_zero = (fzero, fzero)
|
||||
mpi_one = (fone, fone)
|
||||
|
||||
def mpi_eq(s, t):
|
||||
return s == t
|
||||
|
||||
def mpi_ne(s, t):
|
||||
return s != t
|
||||
|
||||
def mpi_lt(s, t):
|
||||
sa, sb = s
|
||||
ta, tb = t
|
||||
if mpf_lt(sb, ta): return True
|
||||
if mpf_ge(sa, tb): return False
|
||||
return None
|
||||
|
||||
def mpi_le(s, t):
|
||||
sa, sb = s
|
||||
ta, tb = t
|
||||
if mpf_le(sb, ta): return True
|
||||
if mpf_gt(sa, tb): return False
|
||||
return None
|
||||
|
||||
def mpi_gt(s, t): return mpi_lt(t, s)
|
||||
def mpi_ge(s, t): return mpi_le(t, s)
|
||||
|
||||
def mpi_add(s, t, prec=0):
|
||||
sa, sb = s
|
||||
ta, tb = t
|
||||
a = mpf_add(sa, ta, prec, round_floor)
|
||||
b = mpf_add(sb, tb, prec, round_ceiling)
|
||||
if a == fnan: a = fninf
|
||||
if b == fnan: b = finf
|
||||
return a, b
|
||||
|
||||
def mpi_sub(s, t, prec=0):
|
||||
sa, sb = s
|
||||
ta, tb = t
|
||||
a = mpf_sub(sa, tb, prec, round_floor)
|
||||
b = mpf_sub(sb, ta, prec, round_ceiling)
|
||||
if a == fnan: a = fninf
|
||||
if b == fnan: b = finf
|
||||
return a, b
|
||||
|
||||
def mpi_delta(s, prec):
|
||||
sa, sb = s
|
||||
return mpf_sub(sb, sa, prec, round_up)
|
||||
|
||||
def mpi_mid(s, prec):
|
||||
sa, sb = s
|
||||
return mpf_shift(mpf_add(sa, sb, prec, round_nearest), -1)
|
||||
|
||||
def mpi_pos(s, prec):
|
||||
sa, sb = s
|
||||
a = mpf_pos(sa, prec, round_floor)
|
||||
b = mpf_pos(sb, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_neg(s, prec=0):
|
||||
sa, sb = s
|
||||
a = mpf_neg(sb, prec, round_floor)
|
||||
b = mpf_neg(sa, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_abs(s, prec=0):
|
||||
sa, sb = s
|
||||
sas = mpf_sign(sa)
|
||||
sbs = mpf_sign(sb)
|
||||
# Both points nonnegative?
|
||||
if sas >= 0:
|
||||
a = mpf_pos(sa, prec, round_floor)
|
||||
b = mpf_pos(sb, prec, round_ceiling)
|
||||
# Upper point nonnegative?
|
||||
elif sbs >= 0:
|
||||
a = fzero
|
||||
negsa = mpf_neg(sa)
|
||||
if mpf_lt(negsa, sb):
|
||||
b = mpf_pos(sb, prec, round_ceiling)
|
||||
else:
|
||||
b = mpf_pos(negsa, prec, round_ceiling)
|
||||
# Both negative?
|
||||
else:
|
||||
a = mpf_neg(sb, prec, round_floor)
|
||||
b = mpf_neg(sa, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
# TODO: optimize
|
||||
def mpi_mul_mpf(s, t, prec):
|
||||
return mpi_mul(s, (t, t), prec)
|
||||
|
||||
def mpi_div_mpf(s, t, prec):
|
||||
return mpi_div(s, (t, t), prec)
|
||||
|
||||
def mpi_mul(s, t, prec=0):
|
||||
sa, sb = s
|
||||
ta, tb = t
|
||||
sas = mpf_sign(sa)
|
||||
sbs = mpf_sign(sb)
|
||||
tas = mpf_sign(ta)
|
||||
tbs = mpf_sign(tb)
|
||||
if sas == sbs == 0:
|
||||
# Should maybe be undefined
|
||||
if ta == fninf or tb == finf:
|
||||
return fninf, finf
|
||||
return fzero, fzero
|
||||
if tas == tbs == 0:
|
||||
# Should maybe be undefined
|
||||
if sa == fninf or sb == finf:
|
||||
return fninf, finf
|
||||
return fzero, fzero
|
||||
if sas >= 0:
|
||||
# positive * positive
|
||||
if tas >= 0:
|
||||
a = mpf_mul(sa, ta, prec, round_floor)
|
||||
b = mpf_mul(sb, tb, prec, round_ceiling)
|
||||
if a == fnan: a = fzero
|
||||
if b == fnan: b = finf
|
||||
# positive * negative
|
||||
elif tbs <= 0:
|
||||
a = mpf_mul(sb, ta, prec, round_floor)
|
||||
b = mpf_mul(sa, tb, prec, round_ceiling)
|
||||
if a == fnan: a = fninf
|
||||
if b == fnan: b = fzero
|
||||
# positive * both signs
|
||||
else:
|
||||
a = mpf_mul(sb, ta, prec, round_floor)
|
||||
b = mpf_mul(sb, tb, prec, round_ceiling)
|
||||
if a == fnan: a = fninf
|
||||
if b == fnan: b = finf
|
||||
elif sbs <= 0:
|
||||
# negative * positive
|
||||
if tas >= 0:
|
||||
a = mpf_mul(sa, tb, prec, round_floor)
|
||||
b = mpf_mul(sb, ta, prec, round_ceiling)
|
||||
if a == fnan: a = fninf
|
||||
if b == fnan: b = fzero
|
||||
# negative * negative
|
||||
elif tbs <= 0:
|
||||
a = mpf_mul(sb, tb, prec, round_floor)
|
||||
b = mpf_mul(sa, ta, prec, round_ceiling)
|
||||
if a == fnan: a = fzero
|
||||
if b == fnan: b = finf
|
||||
# negative * both signs
|
||||
else:
|
||||
a = mpf_mul(sa, tb, prec, round_floor)
|
||||
b = mpf_mul(sa, ta, prec, round_ceiling)
|
||||
if a == fnan: a = fninf
|
||||
if b == fnan: b = finf
|
||||
else:
|
||||
# General case: perform all cross-multiplications and compare
|
||||
# Since the multiplications can be done exactly, we need only
|
||||
# do 4 (instead of 8: two for each rounding mode)
|
||||
cases = [mpf_mul(sa, ta), mpf_mul(sa, tb), mpf_mul(sb, ta), mpf_mul(sb, tb)]
|
||||
if fnan in cases:
|
||||
a, b = (fninf, finf)
|
||||
else:
|
||||
a, b = mpf_min_max(cases)
|
||||
a = mpf_pos(a, prec, round_floor)
|
||||
b = mpf_pos(b, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_square(s, prec=0):
|
||||
sa, sb = s
|
||||
if mpf_ge(sa, fzero):
|
||||
a = mpf_mul(sa, sa, prec, round_floor)
|
||||
b = mpf_mul(sb, sb, prec, round_ceiling)
|
||||
elif mpf_le(sb, fzero):
|
||||
a = mpf_mul(sb, sb, prec, round_floor)
|
||||
b = mpf_mul(sa, sa, prec, round_ceiling)
|
||||
else:
|
||||
sa = mpf_neg(sa)
|
||||
sa, sb = mpf_min_max([sa, sb])
|
||||
a = fzero
|
||||
b = mpf_mul(sb, sb, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_div(s, t, prec):
|
||||
sa, sb = s
|
||||
ta, tb = t
|
||||
sas = mpf_sign(sa)
|
||||
sbs = mpf_sign(sb)
|
||||
tas = mpf_sign(ta)
|
||||
tbs = mpf_sign(tb)
|
||||
# 0 / X
|
||||
if sas == sbs == 0:
|
||||
# 0 / <interval containing 0>
|
||||
if (tas < 0 and tbs > 0) or (tas == 0 or tbs == 0):
|
||||
return fninf, finf
|
||||
return fzero, fzero
|
||||
# Denominator contains both negative and positive numbers;
|
||||
# this should properly be a multi-interval, but the closest
|
||||
# match is the entire (extended) real line
|
||||
if tas < 0 and tbs > 0:
|
||||
return fninf, finf
|
||||
# Assume denominator to be nonnegative
|
||||
if tas < 0:
|
||||
return mpi_div(mpi_neg(s), mpi_neg(t), prec)
|
||||
# Division by zero
|
||||
# XXX: make sure all results make sense
|
||||
if tas == 0:
|
||||
# Numerator contains both signs?
|
||||
if sas < 0 and sbs > 0:
|
||||
return fninf, finf
|
||||
if tas == tbs:
|
||||
return fninf, finf
|
||||
# Numerator positive?
|
||||
if sas >= 0:
|
||||
a = mpf_div(sa, tb, prec, round_floor)
|
||||
b = finf
|
||||
if sbs <= 0:
|
||||
a = fninf
|
||||
b = mpf_div(sb, tb, prec, round_ceiling)
|
||||
# Division with positive denominator
|
||||
# We still have to handle nans resulting from inf/0 or inf/inf
|
||||
else:
|
||||
# Nonnegative numerator
|
||||
if sas >= 0:
|
||||
a = mpf_div(sa, tb, prec, round_floor)
|
||||
b = mpf_div(sb, ta, prec, round_ceiling)
|
||||
if a == fnan: a = fzero
|
||||
if b == fnan: b = finf
|
||||
# Nonpositive numerator
|
||||
elif sbs <= 0:
|
||||
a = mpf_div(sa, ta, prec, round_floor)
|
||||
b = mpf_div(sb, tb, prec, round_ceiling)
|
||||
if a == fnan: a = fninf
|
||||
if b == fnan: b = fzero
|
||||
# Numerator contains both signs?
|
||||
else:
|
||||
a = mpf_div(sa, ta, prec, round_floor)
|
||||
b = mpf_div(sb, ta, prec, round_ceiling)
|
||||
if a == fnan: a = fninf
|
||||
if b == fnan: b = finf
|
||||
return a, b
|
||||
|
||||
def mpi_pi(prec):
|
||||
a = mpf_pi(prec, round_floor)
|
||||
b = mpf_pi(prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_exp(s, prec):
|
||||
sa, sb = s
|
||||
# exp is monotonic
|
||||
a = mpf_exp(sa, prec, round_floor)
|
||||
b = mpf_exp(sb, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_log(s, prec):
|
||||
sa, sb = s
|
||||
# log is monotonic
|
||||
a = mpf_log(sa, prec, round_floor)
|
||||
b = mpf_log(sb, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_sqrt(s, prec):
|
||||
sa, sb = s
|
||||
# sqrt is monotonic
|
||||
a = mpf_sqrt(sa, prec, round_floor)
|
||||
b = mpf_sqrt(sb, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_atan(s, prec):
|
||||
sa, sb = s
|
||||
a = mpf_atan(sa, prec, round_floor)
|
||||
b = mpf_atan(sb, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_pow_int(s, n, prec):
|
||||
sa, sb = s
|
||||
if n < 0:
|
||||
return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec)
|
||||
if n == 0:
|
||||
return (fone, fone)
|
||||
if n == 1:
|
||||
return s
|
||||
if n == 2:
|
||||
return mpi_square(s, prec)
|
||||
# Odd -- signs are preserved
|
||||
if n & 1:
|
||||
a = mpf_pow_int(sa, n, prec, round_floor)
|
||||
b = mpf_pow_int(sb, n, prec, round_ceiling)
|
||||
# Even -- important to ensure positivity
|
||||
else:
|
||||
sas = mpf_sign(sa)
|
||||
sbs = mpf_sign(sb)
|
||||
# Nonnegative?
|
||||
if sas >= 0:
|
||||
a = mpf_pow_int(sa, n, prec, round_floor)
|
||||
b = mpf_pow_int(sb, n, prec, round_ceiling)
|
||||
# Nonpositive?
|
||||
elif sbs <= 0:
|
||||
a = mpf_pow_int(sb, n, prec, round_floor)
|
||||
b = mpf_pow_int(sa, n, prec, round_ceiling)
|
||||
# Mixed signs?
|
||||
else:
|
||||
a = fzero
|
||||
# max(-a,b)**n
|
||||
sa = mpf_neg(sa)
|
||||
if mpf_ge(sa, sb):
|
||||
b = mpf_pow_int(sa, n, prec, round_ceiling)
|
||||
else:
|
||||
b = mpf_pow_int(sb, n, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_pow(s, t, prec):
|
||||
ta, tb = t
|
||||
if ta == tb and ta not in (finf, fninf):
|
||||
if ta == from_int(to_int(ta)):
|
||||
return mpi_pow_int(s, to_int(ta), prec)
|
||||
if ta == fhalf:
|
||||
return mpi_sqrt(s, prec)
|
||||
u = mpi_log(s, prec + 20)
|
||||
v = mpi_mul(u, t, prec + 20)
|
||||
return mpi_exp(v, prec)
|
||||
|
||||
def MIN(x, y):
|
||||
if mpf_le(x, y):
|
||||
return x
|
||||
return y
|
||||
|
||||
def MAX(x, y):
|
||||
if mpf_ge(x, y):
|
||||
return x
|
||||
return y
|
||||
|
||||
def cos_sin_quadrant(x, wp):
|
||||
sign, man, exp, bc = x
|
||||
if x == fzero:
|
||||
return fone, fzero, 0
|
||||
# TODO: combine evaluation code to avoid duplicate modulo
|
||||
c, s = mpf_cos_sin(x, wp)
|
||||
t, n, wp_ = mod_pi2(man, exp, exp+bc, 15)
|
||||
if sign:
|
||||
n = -1-n
|
||||
return c, s, n
|
||||
|
||||
def mpi_cos_sin(x, prec):
|
||||
a, b = x
|
||||
if a == b == fzero:
|
||||
return (fone, fone), (fzero, fzero)
|
||||
# Guaranteed to contain both -1 and 1
|
||||
if (finf in x) or (fninf in x):
|
||||
return (fnone, fone), (fnone, fone)
|
||||
wp = prec + 20
|
||||
ca, sa, na = cos_sin_quadrant(a, wp)
|
||||
cb, sb, nb = cos_sin_quadrant(b, wp)
|
||||
ca, cb = mpf_min_max([ca, cb])
|
||||
sa, sb = mpf_min_max([sa, sb])
|
||||
# Both functions are monotonic within one quadrant
|
||||
if na == nb:
|
||||
pass
|
||||
# Guaranteed to contain both -1 and 1
|
||||
elif nb - na >= 4:
|
||||
return (fnone, fone), (fnone, fone)
|
||||
else:
|
||||
# cos has maximum between a and b
|
||||
if na//4 != nb//4:
|
||||
cb = fone
|
||||
# cos has minimum
|
||||
if (na-2)//4 != (nb-2)//4:
|
||||
ca = fnone
|
||||
# sin has maximum
|
||||
if (na-1)//4 != (nb-1)//4:
|
||||
sb = fone
|
||||
# sin has minimum
|
||||
if (na-3)//4 != (nb-3)//4:
|
||||
sa = fnone
|
||||
# Perturb to force interval rounding
|
||||
more = from_man_exp((MPZ_ONE<<wp) + (MPZ_ONE<<10), -wp)
|
||||
less = from_man_exp((MPZ_ONE<<wp) - (MPZ_ONE<<10), -wp)
|
||||
def finalize(v, rounding):
|
||||
if bool(v[0]) == (rounding == round_floor):
|
||||
p = more
|
||||
else:
|
||||
p = less
|
||||
v = mpf_mul(v, p, prec, rounding)
|
||||
sign, man, exp, bc = v
|
||||
if exp+bc >= 1:
|
||||
if sign:
|
||||
return fnone
|
||||
return fone
|
||||
return v
|
||||
ca = finalize(ca, round_floor)
|
||||
cb = finalize(cb, round_ceiling)
|
||||
sa = finalize(sa, round_floor)
|
||||
sb = finalize(sb, round_ceiling)
|
||||
return (ca,cb), (sa,sb)
|
||||
|
||||
def mpi_cos(x, prec):
|
||||
return mpi_cos_sin(x, prec)[0]
|
||||
|
||||
def mpi_sin(x, prec):
|
||||
return mpi_cos_sin(x, prec)[1]
|
||||
|
||||
def mpi_tan(x, prec):
|
||||
cos, sin = mpi_cos_sin(x, prec+20)
|
||||
return mpi_div(sin, cos, prec)
|
||||
|
||||
def mpi_cot(x, prec):
|
||||
cos, sin = mpi_cos_sin(x, prec+20)
|
||||
return mpi_div(cos, sin, prec)
|
||||
|
||||
def mpi_from_str_a_b(x, y, percent, prec):
|
||||
wp = prec + 20
|
||||
xa = from_str(x, wp, round_floor)
|
||||
xb = from_str(x, wp, round_ceiling)
|
||||
#ya = from_str(y, wp, round_floor)
|
||||
y = from_str(y, wp, round_ceiling)
|
||||
assert mpf_ge(y, fzero)
|
||||
if percent:
|
||||
y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling)
|
||||
y = mpf_div(y, from_int(100), wp, round_ceiling)
|
||||
a = mpf_sub(xa, y, prec, round_floor)
|
||||
b = mpf_add(xb, y, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_from_str(s, prec):
|
||||
"""
|
||||
Parse an interval number given as a string.
|
||||
|
||||
Allowed forms are
|
||||
|
||||
"-1.23e-27"
|
||||
Any single decimal floating-point literal.
|
||||
"a +- b" or "a (b)"
|
||||
a is the midpoint of the interval and b is the half-width
|
||||
"a +- b%" or "a (b%)"
|
||||
a is the midpoint of the interval and the half-width
|
||||
is b percent of a (`a \times b / 100`).
|
||||
"[a, b]"
|
||||
The interval indicated directly.
|
||||
"x[y,z]e"
|
||||
x are shared digits, y and z are unequal digits, e is the exponent.
|
||||
|
||||
"""
|
||||
e = ValueError("Improperly formed interval number '%s'" % s)
|
||||
s = s.replace(" ", "")
|
||||
wp = prec + 20
|
||||
if "+-" in s:
|
||||
x, y = s.split("+-")
|
||||
return mpi_from_str_a_b(x, y, False, prec)
|
||||
# case 2
|
||||
elif "(" in s:
|
||||
# Don't confuse with a complex number (x,y)
|
||||
if s[0] == "(" or ")" not in s:
|
||||
raise e
|
||||
s = s.replace(")", "")
|
||||
percent = False
|
||||
if "%" in s:
|
||||
if s[-1] != "%":
|
||||
raise e
|
||||
percent = True
|
||||
s = s.replace("%", "")
|
||||
x, y = s.split("(")
|
||||
return mpi_from_str_a_b(x, y, percent, prec)
|
||||
elif "," in s:
|
||||
if ('[' not in s) or (']' not in s):
|
||||
raise e
|
||||
if s[0] == '[':
|
||||
# case 3
|
||||
s = s.replace("[", "")
|
||||
s = s.replace("]", "")
|
||||
a, b = s.split(",")
|
||||
a = from_str(a, prec, round_floor)
|
||||
b = from_str(b, prec, round_ceiling)
|
||||
return a, b
|
||||
else:
|
||||
# case 4
|
||||
x, y = s.split('[')
|
||||
y, z = y.split(',')
|
||||
if 'e' in s:
|
||||
z, e = z.split(']')
|
||||
else:
|
||||
z, e = z.rstrip(']'), ''
|
||||
a = from_str(x+y+e, prec, round_floor)
|
||||
b = from_str(x+z+e, prec, round_ceiling)
|
||||
return a, b
|
||||
else:
|
||||
a = from_str(s, prec, round_floor)
|
||||
b = from_str(s, prec, round_ceiling)
|
||||
return a, b
|
||||
|
||||
def mpi_to_str(x, dps, use_spaces=True, brackets='[]', mode='brackets', error_dps=4, **kwargs):
|
||||
"""
|
||||
Convert a mpi interval to a string.
|
||||
|
||||
**Arguments**
|
||||
|
||||
*dps*
|
||||
decimal places to use for printing
|
||||
*use_spaces*
|
||||
use spaces for more readable output, defaults to true
|
||||
*brackets*
|
||||
pair of strings (or two-character string) giving left and right brackets
|
||||
*mode*
|
||||
mode of display: 'plusminus', 'percent', 'brackets' (default) or 'diff'
|
||||
*error_dps*
|
||||
limit the error to *error_dps* digits (mode 'plusminus and 'percent')
|
||||
|
||||
Additional keyword arguments are forwarded to the mpf-to-string conversion
|
||||
for the components of the output.
|
||||
|
||||
**Examples**
|
||||
|
||||
>>> from mpmath import mpi, mp
|
||||
>>> mp.dps = 30
|
||||
>>> x = mpi(1, 2)._mpi_
|
||||
>>> mpi_to_str(x, 2, mode='plusminus')
|
||||
'1.5 +- 0.5'
|
||||
>>> mpi_to_str(x, 2, mode='percent')
|
||||
'1.5 (33.33%)'
|
||||
>>> mpi_to_str(x, 2, mode='brackets')
|
||||
'[1.0, 2.0]'
|
||||
>>> mpi_to_str(x, 2, mode='brackets' , brackets=('<', '>'))
|
||||
'<1.0, 2.0>'
|
||||
>>> x = mpi('5.2582327113062393041', '5.2582327113062749951')._mpi_
|
||||
>>> mpi_to_str(x, 15, mode='diff')
|
||||
'5.2582327113062[4, 7]'
|
||||
>>> mpi_to_str(mpi(0)._mpi_, 2, mode='percent')
|
||||
'0.0 (0.0%)'
|
||||
|
||||
"""
|
||||
prec = dps_to_prec(dps)
|
||||
wp = prec + 20
|
||||
a, b = x
|
||||
mid = mpi_mid(x, prec)
|
||||
delta = mpi_delta(x, prec)
|
||||
a_str = to_str(a, dps, **kwargs)
|
||||
b_str = to_str(b, dps, **kwargs)
|
||||
mid_str = to_str(mid, dps, **kwargs)
|
||||
sp = ""
|
||||
if use_spaces:
|
||||
sp = " "
|
||||
br1, br2 = brackets
|
||||
if mode == 'plusminus':
|
||||
delta_str = to_str(mpf_shift(delta,-1), dps, **kwargs)
|
||||
s = mid_str + sp + "+-" + sp + delta_str
|
||||
elif mode == 'percent':
|
||||
if mid == fzero:
|
||||
p = fzero
|
||||
else:
|
||||
# p = 100 * delta(x) / (2*mid(x))
|
||||
p = mpf_mul(delta, from_int(100))
|
||||
p = mpf_div(p, mpf_mul(mid, from_int(2)), wp)
|
||||
s = mid_str + sp + "(" + to_str(p, error_dps) + "%)"
|
||||
elif mode == 'brackets':
|
||||
s = br1 + a_str + "," + sp + b_str + br2
|
||||
elif mode == 'diff':
|
||||
# use more digits if str(x.a) and str(x.b) are equal
|
||||
if a_str == b_str:
|
||||
a_str = to_str(a, dps+3, **kwargs)
|
||||
b_str = to_str(b, dps+3, **kwargs)
|
||||
# separate mantissa and exponent
|
||||
a = a_str.split('e')
|
||||
if len(a) == 1:
|
||||
a.append('')
|
||||
b = b_str.split('e')
|
||||
if len(b) == 1:
|
||||
b.append('')
|
||||
if a[1] == b[1]:
|
||||
if a[0] != b[0]:
|
||||
for i in xrange(len(a[0]) + 1):
|
||||
if a[0][i] != b[0][i]:
|
||||
break
|
||||
s = (a[0][:i] + br1 + a[0][i:] + ',' + sp + b[0][i:] + br2
|
||||
+ 'e'*min(len(a[1]), 1) + a[1])
|
||||
else: # no difference
|
||||
s = a[0] + br1 + br2 + 'e'*min(len(a[1]), 1) + a[1]
|
||||
else:
|
||||
s = br1 + 'e'.join(a) + ',' + sp + 'e'.join(b) + br2
|
||||
else:
|
||||
raise ValueError("'%s' is unknown mode for printing mpi" % mode)
|
||||
return s
|
||||
|
||||
def mpci_add(x, y, prec):
|
||||
a, b = x
|
||||
c, d = y
|
||||
return mpi_add(a, c, prec), mpi_add(b, d, prec)
|
||||
|
||||
def mpci_sub(x, y, prec):
|
||||
a, b = x
|
||||
c, d = y
|
||||
return mpi_sub(a, c, prec), mpi_sub(b, d, prec)
|
||||
|
||||
def mpci_neg(x, prec=0):
|
||||
a, b = x
|
||||
return mpi_neg(a, prec), mpi_neg(b, prec)
|
||||
|
||||
def mpci_pos(x, prec):
|
||||
a, b = x
|
||||
return mpi_pos(a, prec), mpi_pos(b, prec)
|
||||
|
||||
def mpci_mul(x, y, prec):
|
||||
# TODO: optimize for real/imag cases
|
||||
a, b = x
|
||||
c, d = y
|
||||
r1 = mpi_mul(a,c)
|
||||
r2 = mpi_mul(b,d)
|
||||
re = mpi_sub(r1,r2,prec)
|
||||
i1 = mpi_mul(a,d)
|
||||
i2 = mpi_mul(b,c)
|
||||
im = mpi_add(i1,i2,prec)
|
||||
return re, im
|
||||
|
||||
def mpci_div(x, y, prec):
|
||||
# TODO: optimize for real/imag cases
|
||||
a, b = x
|
||||
c, d = y
|
||||
wp = prec+20
|
||||
m1 = mpi_square(c)
|
||||
m2 = mpi_square(d)
|
||||
m = mpi_add(m1,m2,wp)
|
||||
re = mpi_add(mpi_mul(a,c), mpi_mul(b,d), wp)
|
||||
im = mpi_sub(mpi_mul(b,c), mpi_mul(a,d), wp)
|
||||
re = mpi_div(re, m, prec)
|
||||
im = mpi_div(im, m, prec)
|
||||
return re, im
|
||||
|
||||
def mpci_exp(x, prec):
|
||||
a, b = x
|
||||
wp = prec+20
|
||||
r = mpi_exp(a, wp)
|
||||
c, s = mpi_cos_sin(b, wp)
|
||||
a = mpi_mul(r, c, prec)
|
||||
b = mpi_mul(r, s, prec)
|
||||
return a, b
|
||||
|
||||
def mpi_shift(x, n):
|
||||
a, b = x
|
||||
return mpf_shift(a,n), mpf_shift(b,n)
|
||||
|
||||
def mpi_cosh_sinh(x, prec):
|
||||
# TODO: accuracy for small x
|
||||
wp = prec+20
|
||||
e1 = mpi_exp(x, wp)
|
||||
e2 = mpi_div(mpi_one, e1, wp)
|
||||
c = mpi_add(e1, e2, prec)
|
||||
s = mpi_sub(e1, e2, prec)
|
||||
c = mpi_shift(c, -1)
|
||||
s = mpi_shift(s, -1)
|
||||
return c, s
|
||||
|
||||
def mpci_cos(x, prec):
|
||||
a, b = x
|
||||
wp = prec+10
|
||||
c, s = mpi_cos_sin(a, wp)
|
||||
ch, sh = mpi_cosh_sinh(b, wp)
|
||||
re = mpi_mul(c, ch, prec)
|
||||
im = mpi_mul(s, sh, prec)
|
||||
return re, mpi_neg(im)
|
||||
|
||||
def mpci_sin(x, prec):
|
||||
a, b = x
|
||||
wp = prec+10
|
||||
c, s = mpi_cos_sin(a, wp)
|
||||
ch, sh = mpi_cosh_sinh(b, wp)
|
||||
re = mpi_mul(s, ch, prec)
|
||||
im = mpi_mul(c, sh, prec)
|
||||
return re, im
|
||||
|
||||
def mpci_abs(x, prec):
|
||||
a, b = x
|
||||
if a == mpi_zero:
|
||||
return mpi_abs(b)
|
||||
if b == mpi_zero:
|
||||
return mpi_abs(a)
|
||||
# Important: nonnegative
|
||||
a = mpi_square(a)
|
||||
b = mpi_square(b)
|
||||
t = mpi_add(a, b, prec+20)
|
||||
return mpi_sqrt(t, prec)
|
||||
|
||||
def mpi_atan2(y, x, prec):
|
||||
ya, yb = y
|
||||
xa, xb = x
|
||||
# Constrained to the real line
|
||||
if ya == yb == fzero:
|
||||
if mpf_ge(xa, fzero):
|
||||
return mpi_zero
|
||||
return mpi_pi(prec)
|
||||
# Right half-plane
|
||||
if mpf_ge(xa, fzero):
|
||||
if mpf_ge(ya, fzero):
|
||||
a = mpf_atan2(ya, xb, prec, round_floor)
|
||||
else:
|
||||
a = mpf_atan2(ya, xa, prec, round_floor)
|
||||
if mpf_ge(yb, fzero):
|
||||
b = mpf_atan2(yb, xa, prec, round_ceiling)
|
||||
else:
|
||||
b = mpf_atan2(yb, xb, prec, round_ceiling)
|
||||
# Upper half-plane
|
||||
elif mpf_ge(ya, fzero):
|
||||
b = mpf_atan2(ya, xa, prec, round_ceiling)
|
||||
if mpf_le(xb, fzero):
|
||||
a = mpf_atan2(yb, xb, prec, round_floor)
|
||||
else:
|
||||
a = mpf_atan2(ya, xb, prec, round_floor)
|
||||
# Lower half-plane
|
||||
elif mpf_le(yb, fzero):
|
||||
a = mpf_atan2(yb, xa, prec, round_floor)
|
||||
if mpf_le(xb, fzero):
|
||||
b = mpf_atan2(ya, xb, prec, round_ceiling)
|
||||
else:
|
||||
b = mpf_atan2(yb, xb, prec, round_ceiling)
|
||||
# Covering the origin
|
||||
else:
|
||||
b = mpf_pi(prec, round_ceiling)
|
||||
a = mpf_neg(b)
|
||||
return a, b
|
||||
|
||||
def mpci_arg(z, prec):
|
||||
x, y = z
|
||||
return mpi_atan2(y, x, prec)
|
||||
|
||||
def mpci_log(z, prec):
|
||||
x, y = z
|
||||
re = mpi_log(mpci_abs(z, prec+20), prec)
|
||||
im = mpci_arg(z, prec)
|
||||
return re, im
|
||||
|
||||
def mpci_pow(x, y, prec):
|
||||
# TODO: recognize/speed up real cases, integer y
|
||||
yre, yim = y
|
||||
if yim == mpi_zero:
|
||||
ya, yb = yre
|
||||
if ya == yb:
|
||||
sign, man, exp, bc = yb
|
||||
if man and exp >= 0:
|
||||
return mpci_pow_int(x, (-1)**sign * int(man<<exp), prec)
|
||||
# x^0
|
||||
if yb == fzero:
|
||||
return mpci_pow_int(x, 0, prec)
|
||||
wp = prec+20
|
||||
return mpci_exp(mpci_mul(y, mpci_log(x, wp), wp), prec)
|
||||
|
||||
def mpci_square(x, prec):
|
||||
a, b = x
|
||||
# (a+bi)^2 = (a^2-b^2) + 2abi
|
||||
re = mpi_sub(mpi_square(a), mpi_square(b), prec)
|
||||
im = mpi_mul(a, b, prec)
|
||||
im = mpi_shift(im, 1)
|
||||
return re, im
|
||||
|
||||
def mpci_pow_int(x, n, prec):
|
||||
if n < 0:
|
||||
return mpci_div((mpi_one,mpi_zero), mpci_pow_int(x, -n, prec+20), prec)
|
||||
if n == 0:
|
||||
return mpi_one, mpi_zero
|
||||
if n == 1:
|
||||
return mpci_pos(x, prec)
|
||||
if n == 2:
|
||||
return mpci_square(x, prec)
|
||||
wp = prec + 20
|
||||
result = (mpi_one, mpi_zero)
|
||||
while n:
|
||||
if n & 1:
|
||||
result = mpci_mul(result, x, wp)
|
||||
n -= 1
|
||||
x = mpci_square(x, wp)
|
||||
n >>= 1
|
||||
return mpci_pos(result, prec)
|
||||
|
||||
gamma_min_a = from_float(1.46163214496)
|
||||
gamma_min_b = from_float(1.46163214497)
|
||||
gamma_min = (gamma_min_a, gamma_min_b)
|
||||
gamma_mono_imag_a = from_float(-1.1)
|
||||
gamma_mono_imag_b = from_float(1.1)
|
||||
|
||||
def mpi_overlap(x, y):
|
||||
a, b = x
|
||||
c, d = y
|
||||
if mpf_lt(d, a): return False
|
||||
if mpf_gt(c, b): return False
|
||||
return True
|
||||
|
||||
# type = 0 -- gamma
|
||||
# type = 1 -- factorial
|
||||
# type = 2 -- 1/gamma
|
||||
# type = 3 -- log-gamma
|
||||
|
||||
def mpi_gamma(z, prec, type=0):
|
||||
a, b = z
|
||||
wp = prec+20
|
||||
|
||||
if type == 1:
|
||||
return mpi_gamma(mpi_add(z, mpi_one, wp), prec, 0)
|
||||
|
||||
# increasing
|
||||
if mpf_gt(a, gamma_min_b):
|
||||
if type == 0:
|
||||
c = mpf_gamma(a, prec, round_floor)
|
||||
d = mpf_gamma(b, prec, round_ceiling)
|
||||
elif type == 2:
|
||||
c = mpf_rgamma(b, prec, round_floor)
|
||||
d = mpf_rgamma(a, prec, round_ceiling)
|
||||
elif type == 3:
|
||||
c = mpf_loggamma(a, prec, round_floor)
|
||||
d = mpf_loggamma(b, prec, round_ceiling)
|
||||
# decreasing
|
||||
elif mpf_gt(a, fzero) and mpf_lt(b, gamma_min_a):
|
||||
if type == 0:
|
||||
c = mpf_gamma(b, prec, round_floor)
|
||||
d = mpf_gamma(a, prec, round_ceiling)
|
||||
elif type == 2:
|
||||
c = mpf_rgamma(a, prec, round_floor)
|
||||
d = mpf_rgamma(b, prec, round_ceiling)
|
||||
elif type == 3:
|
||||
c = mpf_loggamma(b, prec, round_floor)
|
||||
d = mpf_loggamma(a, prec, round_ceiling)
|
||||
else:
|
||||
# TODO: reflection formula
|
||||
znew = mpi_add(z, mpi_one, wp)
|
||||
if type == 0: return mpi_div(mpi_gamma(znew, prec+2, 0), z, prec)
|
||||
if type == 2: return mpi_mul(mpi_gamma(znew, prec+2, 2), z, prec)
|
||||
if type == 3: return mpi_sub(mpi_gamma(znew, prec+2, 3), mpi_log(z, prec+2), prec)
|
||||
return c, d
|
||||
|
||||
def mpci_gamma(z, prec, type=0):
|
||||
(a1,a2), (b1,b2) = z
|
||||
|
||||
# Real case
|
||||
if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)):
|
||||
return mpi_gamma(z, prec, type), mpi_zero
|
||||
|
||||
# Estimate precision
|
||||
wp = prec+20
|
||||
if type != 3:
|
||||
amag = a2[2]+a2[3]
|
||||
bmag = b2[2]+b2[3]
|
||||
if a2 != fzero:
|
||||
mag = max(amag, bmag)
|
||||
else:
|
||||
mag = bmag
|
||||
an = abs(to_int(a2))
|
||||
bn = abs(to_int(b2))
|
||||
absn = max(an, bn)
|
||||
gamma_size = max(0,absn*mag)
|
||||
wp += bitcount(gamma_size)
|
||||
|
||||
# Assume type != 1
|
||||
if type == 1:
|
||||
(a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2)
|
||||
type = 0
|
||||
|
||||
# Avoid non-monotonic region near the negative real axis
|
||||
if mpf_lt(a1, gamma_min_b):
|
||||
if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)):
|
||||
# TODO: reflection formula
|
||||
#if mpf_lt(a2, mpf_shift(fone,-1)):
|
||||
# znew = mpci_sub((mpi_one,mpi_zero),z,wp)
|
||||
# ...
|
||||
# Recurrence:
|
||||
# gamma(z) = gamma(z+1)/z
|
||||
znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2)
|
||||
if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec)
|
||||
if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec)
|
||||
if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec)
|
||||
|
||||
# Use monotonicity (except for a small region close to the
|
||||
# origin and near poles)
|
||||
# upper half-plane
|
||||
if mpf_ge(b1, fzero):
|
||||
minre = mpc_loggamma((a1,b2), wp, round_floor)
|
||||
maxre = mpc_loggamma((a2,b1), wp, round_ceiling)
|
||||
minim = mpc_loggamma((a1,b1), wp, round_floor)
|
||||
maxim = mpc_loggamma((a2,b2), wp, round_ceiling)
|
||||
# lower half-plane
|
||||
elif mpf_le(b2, fzero):
|
||||
minre = mpc_loggamma((a1,b1), wp, round_floor)
|
||||
maxre = mpc_loggamma((a2,b2), wp, round_ceiling)
|
||||
minim = mpc_loggamma((a2,b1), wp, round_floor)
|
||||
maxim = mpc_loggamma((a1,b2), wp, round_ceiling)
|
||||
# crosses real axis
|
||||
else:
|
||||
maxre = mpc_loggamma((a2,fzero), wp, round_ceiling)
|
||||
# stretches more into the lower half-plane
|
||||
if mpf_gt(mpf_neg(b1), b2):
|
||||
minre = mpc_loggamma((a1,b1), wp, round_ceiling)
|
||||
else:
|
||||
minre = mpc_loggamma((a1,b2), wp, round_ceiling)
|
||||
minim = mpc_loggamma((a2,b1), wp, round_floor)
|
||||
maxim = mpc_loggamma((a2,b2), wp, round_floor)
|
||||
|
||||
w = (minre[0], maxre[0]), (minim[1], maxim[1])
|
||||
if type == 3:
|
||||
return mpi_pos(w[0], prec), mpi_pos(w[1], prec)
|
||||
if type == 2:
|
||||
w = mpci_neg(w)
|
||||
return mpci_exp(w, prec)
|
||||
|
||||
def mpi_loggamma(z, prec): return mpi_gamma(z, prec, type=3)
|
||||
def mpci_loggamma(z, prec): return mpci_gamma(z, prec, type=3)
|
||||
|
||||
def mpi_rgamma(z, prec): return mpi_gamma(z, prec, type=2)
|
||||
def mpci_rgamma(z, prec): return mpci_gamma(z, prec, type=2)
|
||||
|
||||
def mpi_factorial(z, prec): return mpi_gamma(z, prec, type=1)
|
||||
def mpci_factorial(z, prec): return mpci_gamma(z, prec, type=1)
|
||||
Reference in New Issue
Block a user