增加环绕侦察场景适配

This commit is contained in:
2026-01-08 15:44:38 +08:00
parent 3eba1f962b
commit 10c5bb5a8a
5441 changed files with 40219 additions and 379695 deletions

View File

@@ -80,8 +80,6 @@ numpy.polynomial
"""
import numpy as np
import numpy.linalg as la
from numpy.lib.array_utils import normalize_axis_index
from . import polyutils as pu
from ._polybase import ABCPolyBase
@@ -676,7 +674,7 @@ def legder(c, m=1, scl=1, axis=0):
iaxis = pu._as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of derivation must be non-negative")
iaxis = normalize_axis_index(iaxis, c.ndim)
iaxis = np.lib.array_utils.normalize_axis_index(iaxis, c.ndim)
if cnt == 0:
return c
@@ -799,7 +797,7 @@ def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
raise ValueError("lbnd must be a scalar.")
if np.ndim(scl) != 0:
raise ValueError("scl must be a scalar.")
iaxis = normalize_axis_index(iaxis, c.ndim)
iaxis = np.lib.array_utils.normalize_axis_index(iaxis, c.ndim)
if cnt == 0:
return c
@@ -1164,7 +1162,7 @@ def legvander2d(x, y, deg):
correspond to the elements of a 2-D coefficient array `c` of shape
(xdeg + 1, ydeg + 1) in the order
.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
.. math:: c_{00}, c_{01}, c_{02}, ... , c_{10}, c_{11}, c_{12}, ...
and ``np.dot(V, c.flat)`` and ``legval2d(x, y, c)`` will be the same
up to roundoff. This equivalence is useful both for least squares
@@ -1464,7 +1462,7 @@ def legroots(c):
# rotated companion matrix reduces error
m = legcompanion(c)[::-1, ::-1]
r = la.eigvals(m)
r = np.linalg.eigvals(m)
r.sort()
return r
@@ -1510,7 +1508,7 @@ def leggauss(deg):
# matrix is symmetric in this case in order to obtain better zeros.
c = np.array([0] * deg + [1])
m = legcompanion(c)
x = la.eigvalsh(m)
x = np.linalg.eigvalsh(m)
# improve roots by one application of Newton
dy = legval(x, c)