增加环绕侦察场景适配
This commit is contained in:
@@ -1,6 +1,17 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Sequence
|
||||
from typing import SupportsIndex, TypeAlias, TypeVar, overload
|
||||
|
||||
import numpy as np
|
||||
from numpy import _CastingKind
|
||||
from numpy._typing import (
|
||||
ArrayLike,
|
||||
DTypeLike,
|
||||
_AnyShape,
|
||||
_ArrayLike,
|
||||
_DTypeLike,
|
||||
_ShapeLike,
|
||||
)
|
||||
from numpy.lib._function_base_impl import average
|
||||
from numpy.lib._index_tricks_impl import AxisConcatenator
|
||||
|
||||
@@ -55,59 +66,207 @@ __all__ = [
|
||||
"vstack",
|
||||
]
|
||||
|
||||
def count_masked(arr, axis=...): ...
|
||||
def masked_all(shape, dtype=...): ...
|
||||
_ScalarT = TypeVar("_ScalarT", bound=np.generic)
|
||||
_ScalarT1 = TypeVar("_ScalarT1", bound=np.generic)
|
||||
_ScalarT2 = TypeVar("_ScalarT2", bound=np.generic)
|
||||
_MArrayT = TypeVar("_MArrayT", bound=MaskedArray)
|
||||
|
||||
_MArray: TypeAlias = MaskedArray[_AnyShape, np.dtype[_ScalarT]]
|
||||
|
||||
###
|
||||
|
||||
# keep in sync with `numpy._core.shape_base.atleast_1d`
|
||||
@overload
|
||||
def atleast_1d(a0: _ArrayLike[_ScalarT], /) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def atleast_1d(a0: _ArrayLike[_ScalarT1], a1: _ArrayLike[_ScalarT2], /) -> tuple[_MArray[_ScalarT1], _MArray[_ScalarT2]]: ...
|
||||
@overload
|
||||
def atleast_1d(
|
||||
a0: _ArrayLike[_ScalarT], a1: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]
|
||||
) -> tuple[_MArray[_ScalarT], ...]: ...
|
||||
@overload
|
||||
def atleast_1d(a0: ArrayLike, /) -> _MArray[Incomplete]: ...
|
||||
@overload
|
||||
def atleast_1d(a0: ArrayLike, a1: ArrayLike, /) -> tuple[_MArray[Incomplete], _MArray[Incomplete]]: ...
|
||||
@overload
|
||||
def atleast_1d(a0: ArrayLike, a1: ArrayLike, /, *ai: ArrayLike) -> tuple[_MArray[Incomplete], ...]: ...
|
||||
|
||||
# keep in sync with `numpy._core.shape_base.atleast_2d`
|
||||
@overload
|
||||
def atleast_2d(a0: _ArrayLike[_ScalarT], /) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def atleast_2d(a0: _ArrayLike[_ScalarT1], a1: _ArrayLike[_ScalarT2], /) -> tuple[_MArray[_ScalarT1], _MArray[_ScalarT2]]: ...
|
||||
@overload
|
||||
def atleast_2d(
|
||||
a0: _ArrayLike[_ScalarT], a1: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]
|
||||
) -> tuple[_MArray[_ScalarT], ...]: ...
|
||||
@overload
|
||||
def atleast_2d(a0: ArrayLike, /) -> _MArray[Incomplete]: ...
|
||||
@overload
|
||||
def atleast_2d(a0: ArrayLike, a1: ArrayLike, /) -> tuple[_MArray[Incomplete], _MArray[Incomplete]]: ...
|
||||
@overload
|
||||
def atleast_2d(a0: ArrayLike, a1: ArrayLike, /, *ai: ArrayLike) -> tuple[_MArray[Incomplete], ...]: ...
|
||||
|
||||
# keep in sync with `numpy._core.shape_base.atleast_2d`
|
||||
@overload
|
||||
def atleast_3d(a0: _ArrayLike[_ScalarT], /) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def atleast_3d(a0: _ArrayLike[_ScalarT1], a1: _ArrayLike[_ScalarT2], /) -> tuple[_MArray[_ScalarT1], _MArray[_ScalarT2]]: ...
|
||||
@overload
|
||||
def atleast_3d(
|
||||
a0: _ArrayLike[_ScalarT], a1: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]
|
||||
) -> tuple[_MArray[_ScalarT], ...]: ...
|
||||
@overload
|
||||
def atleast_3d(a0: ArrayLike, /) -> _MArray[Incomplete]: ...
|
||||
@overload
|
||||
def atleast_3d(a0: ArrayLike, a1: ArrayLike, /) -> tuple[_MArray[Incomplete], _MArray[Incomplete]]: ...
|
||||
@overload
|
||||
def atleast_3d(a0: ArrayLike, a1: ArrayLike, /, *ai: ArrayLike) -> tuple[_MArray[Incomplete], ...]: ...
|
||||
|
||||
# keep in sync with `numpy._core.shape_base.vstack`
|
||||
@overload
|
||||
def vstack(
|
||||
tup: Sequence[_ArrayLike[_ScalarT]],
|
||||
*,
|
||||
dtype: None = None,
|
||||
casting: _CastingKind = "same_kind"
|
||||
) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def vstack(
|
||||
tup: Sequence[ArrayLike],
|
||||
*,
|
||||
dtype: _DTypeLike[_ScalarT],
|
||||
casting: _CastingKind = "same_kind"
|
||||
) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def vstack(
|
||||
tup: Sequence[ArrayLike],
|
||||
*,
|
||||
dtype: DTypeLike | None = None,
|
||||
casting: _CastingKind = "same_kind"
|
||||
) -> _MArray[Incomplete]: ...
|
||||
|
||||
row_stack = vstack
|
||||
|
||||
# keep in sync with `numpy._core.shape_base.hstack`
|
||||
@overload
|
||||
def hstack(
|
||||
tup: Sequence[_ArrayLike[_ScalarT]],
|
||||
*,
|
||||
dtype: None = None,
|
||||
casting: _CastingKind = "same_kind"
|
||||
) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def hstack(
|
||||
tup: Sequence[ArrayLike],
|
||||
*,
|
||||
dtype: _DTypeLike[_ScalarT],
|
||||
casting: _CastingKind = "same_kind"
|
||||
) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def hstack(
|
||||
tup: Sequence[ArrayLike],
|
||||
*,
|
||||
dtype: DTypeLike | None = None,
|
||||
casting: _CastingKind = "same_kind"
|
||||
) -> _MArray[Incomplete]: ...
|
||||
|
||||
# keep in sync with `numpy._core.shape_base_impl.column_stack`
|
||||
@overload
|
||||
def column_stack(tup: Sequence[_ArrayLike[_ScalarT]]) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def column_stack(tup: Sequence[ArrayLike]) -> _MArray[Incomplete]: ...
|
||||
|
||||
# keep in sync with `numpy._core.shape_base_impl.dstack`
|
||||
@overload
|
||||
def dstack(tup: Sequence[_ArrayLike[_ScalarT]]) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def dstack(tup: Sequence[ArrayLike]) -> _MArray[Incomplete]: ...
|
||||
|
||||
# keep in sync with `numpy._core.shape_base.stack`
|
||||
@overload
|
||||
def stack(
|
||||
arrays: Sequence[_ArrayLike[_ScalarT]],
|
||||
axis: SupportsIndex = 0,
|
||||
out: None = None,
|
||||
*,
|
||||
dtype: None = None,
|
||||
casting: _CastingKind = "same_kind"
|
||||
) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def stack(
|
||||
arrays: Sequence[ArrayLike],
|
||||
axis: SupportsIndex = 0,
|
||||
out: None = None,
|
||||
*,
|
||||
dtype: _DTypeLike[_ScalarT],
|
||||
casting: _CastingKind = "same_kind"
|
||||
) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def stack(
|
||||
arrays: Sequence[ArrayLike],
|
||||
axis: SupportsIndex = 0,
|
||||
out: None = None,
|
||||
*,
|
||||
dtype: DTypeLike | None = None,
|
||||
casting: _CastingKind = "same_kind"
|
||||
) -> _MArray[Incomplete]: ...
|
||||
@overload
|
||||
def stack(
|
||||
arrays: Sequence[ArrayLike],
|
||||
axis: SupportsIndex,
|
||||
out: _MArrayT,
|
||||
*,
|
||||
dtype: DTypeLike | None = None,
|
||||
casting: _CastingKind = "same_kind",
|
||||
) -> _MArrayT: ...
|
||||
@overload
|
||||
def stack(
|
||||
arrays: Sequence[ArrayLike],
|
||||
axis: SupportsIndex = 0,
|
||||
*,
|
||||
out: _MArrayT,
|
||||
dtype: DTypeLike | None = None,
|
||||
casting: _CastingKind = "same_kind",
|
||||
) -> _MArrayT: ...
|
||||
|
||||
# keep in sync with `numpy._core.shape_base_impl.hsplit`
|
||||
@overload
|
||||
def hsplit(ary: _ArrayLike[_ScalarT], indices_or_sections: _ShapeLike) -> list[_MArray[_ScalarT]]: ...
|
||||
@overload
|
||||
def hsplit(ary: ArrayLike, indices_or_sections: _ShapeLike) -> list[_MArray[Incomplete]]: ...
|
||||
|
||||
# keep in sync with `numpy._core.twodim_base_impl.hsplit`
|
||||
@overload
|
||||
def diagflat(v: _ArrayLike[_ScalarT], k: int = 0) -> _MArray[_ScalarT]: ...
|
||||
@overload
|
||||
def diagflat(v: ArrayLike, k: int = 0) -> _MArray[Incomplete]: ...
|
||||
|
||||
# TODO: everything below
|
||||
|
||||
def count_masked(arr, axis=None): ...
|
||||
def masked_all(shape, dtype=float): ... # noqa: PYI014
|
||||
def masked_all_like(arr): ...
|
||||
|
||||
class _fromnxfunction:
|
||||
__name__: Incomplete
|
||||
__doc__: Incomplete
|
||||
def __init__(self, funcname) -> None: ...
|
||||
def getdoc(self): ...
|
||||
def __call__(self, *args, **params): ...
|
||||
|
||||
class _fromnxfunction_single(_fromnxfunction):
|
||||
def __call__(self, x, *args, **params): ...
|
||||
|
||||
class _fromnxfunction_seq(_fromnxfunction):
|
||||
def __call__(self, x, *args, **params): ...
|
||||
|
||||
class _fromnxfunction_allargs(_fromnxfunction):
|
||||
def __call__(self, *args, **params): ...
|
||||
|
||||
atleast_1d: _fromnxfunction_allargs
|
||||
atleast_2d: _fromnxfunction_allargs
|
||||
atleast_3d: _fromnxfunction_allargs
|
||||
|
||||
vstack: _fromnxfunction_seq
|
||||
row_stack: _fromnxfunction_seq
|
||||
hstack: _fromnxfunction_seq
|
||||
column_stack: _fromnxfunction_seq
|
||||
dstack: _fromnxfunction_seq
|
||||
stack: _fromnxfunction_seq
|
||||
|
||||
hsplit: _fromnxfunction_single
|
||||
diagflat: _fromnxfunction_single
|
||||
|
||||
def apply_along_axis(func1d, axis, arr, *args, **kwargs): ...
|
||||
def apply_over_axes(func, a, axes): ...
|
||||
def median(a, axis=..., out=..., overwrite_input=..., keepdims=...): ...
|
||||
def compress_nd(x, axis=...): ...
|
||||
def compress_rowcols(x, axis=...): ...
|
||||
def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): ...
|
||||
def compress_nd(x, axis=None): ...
|
||||
def compress_rowcols(x, axis=None): ...
|
||||
def compress_rows(a): ...
|
||||
def compress_cols(a): ...
|
||||
def mask_rows(a, axis=...): ...
|
||||
def mask_cols(a, axis=...): ...
|
||||
def ediff1d(arr, to_end=..., to_begin=...): ...
|
||||
def unique(ar1, return_index=..., return_inverse=...): ...
|
||||
def intersect1d(ar1, ar2, assume_unique=...): ...
|
||||
def setxor1d(ar1, ar2, assume_unique=...): ...
|
||||
def in1d(ar1, ar2, assume_unique=..., invert=...): ...
|
||||
def isin(element, test_elements, assume_unique=..., invert=...): ...
|
||||
def ediff1d(arr, to_end=None, to_begin=None): ...
|
||||
def unique(ar1, return_index=False, return_inverse=False): ...
|
||||
def intersect1d(ar1, ar2, assume_unique=False): ...
|
||||
def setxor1d(ar1, ar2, assume_unique=False): ...
|
||||
def in1d(ar1, ar2, assume_unique=False, invert=False): ...
|
||||
def isin(element, test_elements, assume_unique=False, invert=False): ...
|
||||
def union1d(ar1, ar2): ...
|
||||
def setdiff1d(ar1, ar2, assume_unique=...): ...
|
||||
def cov(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ...
|
||||
def corrcoef(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ...
|
||||
def setdiff1d(ar1, ar2, assume_unique=False): ...
|
||||
def cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None): ...
|
||||
def corrcoef(x, y=None, rowvar=True, allow_masked=True): ...
|
||||
|
||||
class MAxisConcatenator(AxisConcatenator):
|
||||
__slots__ = ()
|
||||
@@ -124,15 +283,15 @@ class mr_class(MAxisConcatenator):
|
||||
|
||||
mr_: mr_class
|
||||
|
||||
def ndenumerate(a, compressed=...): ...
|
||||
def ndenumerate(a, compressed=True): ...
|
||||
def flatnotmasked_edges(a): ...
|
||||
def notmasked_edges(a, axis=...): ...
|
||||
def notmasked_edges(a, axis=None): ...
|
||||
def flatnotmasked_contiguous(a): ...
|
||||
def notmasked_contiguous(a, axis=...): ...
|
||||
def notmasked_contiguous(a, axis=None): ...
|
||||
def clump_unmasked(a): ...
|
||||
def clump_masked(a): ...
|
||||
def vander(x, n=...): ...
|
||||
def polyfit(x, y, deg, rcond=..., full=..., w=..., cov=...): ...
|
||||
def vander(x, n=None): ...
|
||||
def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): ...
|
||||
|
||||
#
|
||||
def mask_rowcols(a: Incomplete, axis: Incomplete | None = None) -> MaskedArray[Incomplete, np.dtype[Incomplete]]: ...
|
||||
|
||||
Reference in New Issue
Block a user